Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
from q_learning_chatbot import QLearningChatbot | |
from xgb_mental_health import MentalHealthClassifier | |
from bm25_retreive_question import QuestionRetriever as QuestionRetriever_bm25 | |
from Chromadb_storage import QuestionRetriever as QuestionRetriever_chromaDB | |
from llm_response_generator import LLLResponseGenerator | |
import os | |
# Streamlit UI | |
st.title("FOMO Fix - RL-based Mental Health Assistant") | |
# Define states and actions | |
states = [ | |
"Negative", | |
"Moderately Negative", | |
"Neutral", | |
"Moderately Positive", | |
"Positive", | |
] | |
actions = ["encouragement", "empathy", "spiritual"] | |
# Initialize Q-learning chatbot and mental health classifier | |
chatbot = QLearningChatbot(states, actions) | |
# Initialize MentalHealthClassifier | |
# data_path = "/Users/jaelinlee/Documents/projects/fomo/input/data.csv" | |
data_path = "data/data.csv" | |
tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment" | |
mental_classifier_model_path = "app/mental_health_model.pkl" | |
mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path) | |
# Function to display Q-table | |
def display_q_table(q_values, states, actions): | |
q_table_dict = {"State": states} | |
for i, action in enumerate(actions): | |
q_table_dict[action] = q_values[:, i] | |
q_table_df = pd.DataFrame(q_table_dict) | |
return q_table_df | |
# Initialize memory | |
if "entered_text" not in st.session_state: | |
st.session_state.entered_text = [] | |
if "entered_mood" not in st.session_state: | |
st.session_state.entered_mood = [] | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Select Question Retriever | |
selected_retriever_option = st.sidebar.selectbox( | |
"Choose Question Retriever", ("BM25", "ChromaDB") | |
) | |
if selected_retriever_option == "BM25": | |
retriever = QuestionRetriever_bm25() | |
if selected_retriever_option == "ChromaDB": | |
retriever = QuestionRetriever_chromaDB() | |
for message in st.session_state.messages: | |
with st.chat_message(message.get("role")): | |
st.write(message.get("content")) | |
# Collect user input | |
user_message = st.chat_input("Type your message here:") | |
# Take user input | |
if user_message: | |
st.session_state.entered_text.append(user_message) | |
st.session_state.messages.append({"role": "user", "content": user_message}) | |
with st.chat_message("user"): | |
st.write(user_message) | |
# Detect mental condition | |
with st.spinner("Processing..."): | |
mental_classifier.initialize_tokenizer(tokenizer_model_name) | |
mental_classifier.preprocess_data() | |
predicted_mental_category = mental_classifier.predict_category(user_message) | |
print("Predicted mental health condition:", predicted_mental_category) | |
# Detect sentiment | |
user_sentiment = chatbot.detect_sentiment(user_message) | |
# Retrieve question | |
if user_sentiment in ["Negative", "Moderately Negative"]: | |
question = retriever.get_response(user_message, predicted_mental_category) | |
show_question = True | |
else: | |
show_question = False | |
question = "" | |
predicted_mental_category = "" | |
# Update mood history / moode_trend | |
chatbot.update_mood_history() | |
mood_trend = chatbot.check_mood_trend() | |
# Define rewards | |
if user_sentiment in ["Positive", "Moderately Positive"]: | |
if mood_trend == "increased": | |
reward = +1 | |
mood_trend_symbol = " ⬆️" | |
elif mood_trend == "unchanged": | |
reward = +0.8 | |
mood_trend_symbol = "" | |
else: # decresed | |
reward = -0.2 | |
mood_trend_symbol = " ⬇️" | |
else: | |
if mood_trend == "increased": | |
reward = +1 | |
mood_trend_symbol = " ⬆️" | |
elif mood_trend == "unchanged": | |
reward = -0.2 | |
mood_trend_symbol = "" | |
else: # decreased | |
reward = -1 | |
mood_trend_symbol = " ⬇️" | |
print( | |
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑 -- (a)" | |
) | |
# Update Q-values | |
chatbot.update_q_values( | |
user_sentiment, chatbot.actions[0], reward, user_sentiment | |
) | |
# Get recommended action based on the updated Q-values | |
ai_tone = chatbot.get_action(user_sentiment) | |
print(ai_tone) | |
# -------------- | |
# LLM Response Generator | |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
llm_model = LLLResponseGenerator() | |
temperature = 0.1 | |
max_length = 128 | |
template = """INSTRUCTIONS: {context} | |
Respond to the user with a tone of {ai_tone}. | |
Question asked to the user: {question} | |
Response by the user: {user_text} | |
Response; | |
""" | |
context = "You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user." | |
llm_response = llm_model.llm_inference( | |
model_type="huggingface", | |
question=question, | |
prompt_template=template, | |
context=context, | |
ai_tone=ai_tone, | |
questionnaire=predicted_mental_category, | |
user_text=user_message, | |
temperature=temperature, | |
max_length=max_length, | |
) | |
st.session_state.messages.append({"role": "ai", "content": llm_response}) | |
with st.chat_message("ai"): | |
st.markdown(llm_response) | |
# st.write(f"{llm_response}") | |
if show_question: | |
st.write(f"{question}") | |
# else: | |
# user doesn't feel negative. | |
# get question to ecourage even more positive behaviour | |
st.subheader("Behind the Scence - What AI is doing:") | |
st.write( | |
f"- Detected User Tone: {user_sentiment} ({mood_trend.capitalize()}{mood_trend_symbol})" | |
) | |
if show_question: | |
st.write( | |
f"- Possible Mental Condition: {predicted_mental_category.capitalize()}" | |
) | |
st.write(f"- AI Tone: {ai_tone.capitalize()}") | |
st.write(f"- Question retrieved from: {selected_retriever_option}") | |
st.write( | |
f"- If the user feels neagative or moderately negative, at the end of the AI response, it adds a mental health condition realted question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, and ADHD which are most associated with FOMO related to excessive social media usage." | |
) | |
st.write( | |
f"- Below q-table is continously updated after each interaction with the user. If the user's mood increases, AI gets reward. Else, AI gets punishment." | |
) | |
# Display results | |
# st.subheader(f"{user_sentiment.capitalize()}") | |
# st.write("->" + f"{ai_tone.capitalize()}") | |
# st.write(f"Mood {chatbot.check_mood_trend()}") | |
# st.write(f"{ai_tone.capitalize()}, {chatbot.check_mood_trend()}") | |
# Display Q-table | |
st.dataframe(display_q_table(chatbot.q_values, states, actions)) | |
# Display mood history | |
# st.subheader("Mood History (Recent 5):") | |
# for mood_now in reversed(chatbot.mood_history[-5:]): #st.session_state.entered_mood[-5:], chatbot.mood_history[-5:]): #st.session_state.entered_text[-5:] | |
# st.write(f"{mood_now}") | |