Omartificial-Intelligence-Space commited on
Commit
eed4be8
·
verified ·
1 Parent(s): 6a39ecf

update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -8
app.py CHANGED
@@ -18,26 +18,30 @@ def evaluate_model(model_id, num_questions):
18
  model = SentenceTransformer(model_id, device=device)
19
  matryoshka_dimensions = [768, 512, 256, 128, 64]
20
 
21
- # Prepare datasets (using slicing to limit number of samples)
22
  datasets_info = [
23
  {
24
  "name": "Financial",
25
  "dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
26
- "split": f"train[:{num_questions}]", # Slicing to get the first num_questions samples
27
- "columns": ("question", "context")
 
28
  },
29
  {
30
  "name": "MLQA",
31
  "dataset_id": "google/xtreme",
32
  "subset": "MLQA.ar.ar",
33
- "split": f"validation[:{num_questions}]", # Slicing to get the first num_questions samples
34
- "columns": ("question", "context")
 
35
  },
36
  {
37
  "name": "ARCD",
38
  "dataset_id": "hsseinmz/arcd",
39
- "split": f"train[-{num_questions}:]", # Slicing to get the last num_questions samples
40
- "columns": ("question", "context")
 
 
41
  }
42
  ]
43
 
@@ -45,12 +49,18 @@ def evaluate_model(model_id, num_questions):
45
  scores_by_dataset = {}
46
 
47
  for dataset_info in datasets_info:
48
- # Load the dataset with slicing
49
  if "subset" in dataset_info:
50
  dataset = load_dataset(dataset_info["dataset_id"], dataset_info["subset"], split=dataset_info["split"])
51
  else:
52
  dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
53
 
 
 
 
 
 
 
54
  # Rename columns to 'anchor' and 'positive'
55
  dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
56
  dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
 
18
  model = SentenceTransformer(model_id, device=device)
19
  matryoshka_dimensions = [768, 512, 256, 128, 64]
20
 
21
+ # Prepare datasets (Load entire split, then select num_questions)
22
  datasets_info = [
23
  {
24
  "name": "Financial",
25
  "dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
26
+ "split": "train", # Only train split
27
+ "columns": ("question", "context"),
28
+ "sample_size": num_questions
29
  },
30
  {
31
  "name": "MLQA",
32
  "dataset_id": "google/xtreme",
33
  "subset": "MLQA.ar.ar",
34
+ "split": "validation", # Only validation split
35
+ "columns": ("question", "context"),
36
+ "sample_size": num_questions
37
  },
38
  {
39
  "name": "ARCD",
40
  "dataset_id": "hsseinmz/arcd",
41
+ "split": "train", # Only train split
42
+ "columns": ("question", "context"),
43
+ "sample_size": num_questions,
44
+ "last_rows": True # Take the last num_questions rows
45
  }
46
  ]
47
 
 
49
  scores_by_dataset = {}
50
 
51
  for dataset_info in datasets_info:
52
+ # Load the full dataset split and limit it afterward
53
  if "subset" in dataset_info:
54
  dataset = load_dataset(dataset_info["dataset_id"], dataset_info["subset"], split=dataset_info["split"])
55
  else:
56
  dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
57
 
58
+ # Select the required number of rows
59
+ if dataset_info.get("last_rows"):
60
+ dataset = dataset.select(range(len(dataset) - dataset_info["sample_size"], len(dataset))) # Take last n rows
61
+ else:
62
+ dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset)))) # Take first n rows
63
+
64
  # Rename columns to 'anchor' and 'positive'
65
  dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
66
  dataset = dataset.rename_column(dataset_info["columns"][1], "positive")