Spaces:
Running
on
Zero
Running
on
Zero
Omartificial-Intelligence-Space
commited on
update app.py
Browse files
app.py
CHANGED
@@ -18,33 +18,30 @@ def evaluate_model(model_id, num_questions):
|
|
18 |
model = SentenceTransformer(model_id, device=device)
|
19 |
matryoshka_dimensions = [768, 512, 256, 128, 64]
|
20 |
|
21 |
-
# Prepare datasets
|
22 |
datasets_info = [
|
23 |
{
|
24 |
"name": "Financial",
|
25 |
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
|
26 |
-
"split": "train",
|
27 |
-
"size": 7000,
|
28 |
"columns": ("question", "context"),
|
29 |
"sample_size": num_questions
|
30 |
},
|
31 |
{
|
32 |
"name": "MLQA",
|
33 |
"dataset_id": "google/xtreme",
|
34 |
-
"subset": "MLQA.ar.ar",
|
35 |
"split": "validation",
|
36 |
-
"size": 500,
|
37 |
"columns": ("question", "context"),
|
38 |
"sample_size": num_questions
|
39 |
},
|
40 |
{
|
41 |
"name": "ARCD",
|
42 |
"dataset_id": "hsseinmz/arcd",
|
43 |
-
"split": "train",
|
44 |
-
"size": None,
|
45 |
"columns": ("question", "context"),
|
46 |
"sample_size": num_questions,
|
47 |
-
"last_rows": True # Take the last
|
48 |
}
|
49 |
]
|
50 |
|
@@ -58,13 +55,13 @@ def evaluate_model(model_id, num_questions):
|
|
58 |
else:
|
59 |
dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
|
60 |
|
61 |
-
#
|
62 |
if dataset_info.get("last_rows"):
|
63 |
-
dataset = dataset.select(range(len(dataset) - dataset_info["sample_size"], len(dataset)))
|
64 |
else:
|
65 |
-
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset))))
|
66 |
|
67 |
-
# Rename columns
|
68 |
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
|
69 |
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
|
70 |
|
|
|
18 |
model = SentenceTransformer(model_id, device=device)
|
19 |
matryoshka_dimensions = [768, 512, 256, 128, 64]
|
20 |
|
21 |
+
# Prepare datasets (only load the necessary split and limit to num_questions)
|
22 |
datasets_info = [
|
23 |
{
|
24 |
"name": "Financial",
|
25 |
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
|
26 |
+
"split": "train", # Only train split
|
|
|
27 |
"columns": ("question", "context"),
|
28 |
"sample_size": num_questions
|
29 |
},
|
30 |
{
|
31 |
"name": "MLQA",
|
32 |
"dataset_id": "google/xtreme",
|
33 |
+
"subset": "MLQA.ar.ar", # Validation split only
|
34 |
"split": "validation",
|
|
|
35 |
"columns": ("question", "context"),
|
36 |
"sample_size": num_questions
|
37 |
},
|
38 |
{
|
39 |
"name": "ARCD",
|
40 |
"dataset_id": "hsseinmz/arcd",
|
41 |
+
"split": "train", # Only train split
|
|
|
42 |
"columns": ("question", "context"),
|
43 |
"sample_size": num_questions,
|
44 |
+
"last_rows": True # Take the last num_questions rows
|
45 |
}
|
46 |
]
|
47 |
|
|
|
55 |
else:
|
56 |
dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
|
57 |
|
58 |
+
# Limit the number of samples to num_questions (500 max)
|
59 |
if dataset_info.get("last_rows"):
|
60 |
+
dataset = dataset.select(range(len(dataset) - dataset_info["sample_size"], len(dataset))) # Take last n rows
|
61 |
else:
|
62 |
+
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset)))) # Take first n rows
|
63 |
|
64 |
+
# Rename columns to 'anchor' and 'positive'
|
65 |
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
|
66 |
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
|
67 |
|