Omar Elshehy
add mrr@10 metric
3516960
raw
history blame
7.66 kB
import gradio as gr
import spaces
import torch
import pandas as pd
import plotly.graph_objects as go
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
from sentence_transformers.util import cos_sim
# Check for GPU support and configure appropriately
device = "cuda" if torch.cuda.is_available() else "cpu"
zero = torch.Tensor([0]).to(device)
print(f"Device being used: {zero.device}")
@spaces.GPU
def evaluate_model(model_id, num_questions):
model = SentenceTransformer(model_id, device=device)
matryoshka_dimensions = [768, 512, 256, 128, 64]
# Prepare datasets (Load entire split, then select num_questions)
datasets_info = [
{
"name": "Financial",
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
"split": "train", # Only train split
"columns": ("question", "context"),
"sample_size": num_questions
},
{
"name": "MLQA",
"dataset_id": "google/xtreme",
"subset": "MLQA.ar.ar",
"split": "validation", # Only validation split
"columns": ("question", "context"),
"sample_size": num_questions
},
{
"name": "ARCD",
"dataset_id": "hsseinmz/arcd",
"split": "train", # Only train split
"columns": ("question", "context"),
"sample_size": num_questions,
"last_rows": True # Take the last num_questions rows
}
]
evaluation_results = []
scores_by_dataset = {}
for dataset_info in datasets_info:
# Load the full dataset split and limit it afterward
if "subset" in dataset_info:
dataset = load_dataset(dataset_info["dataset_id"], dataset_info["subset"], split=dataset_info["split"])
else:
dataset = load_dataset(dataset_info["dataset_id"], split=dataset_info["split"])
# Select the required number of rows
if dataset_info.get("last_rows"):
dataset = dataset.select(
range(len(dataset) - dataset_info["sample_size"], len(dataset))) # Take last n rows
else:
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset)))) # Take first n rows
# Rename columns to 'anchor' and 'positive'
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
# Check if "id" column already exists before adding it
if "id" not in dataset.column_names:
dataset = dataset.add_column("id", range(len(dataset)))
# Prepare queries and corpus
corpus = dict(zip(dataset["id"], dataset["positive"]))
queries = dict(zip(dataset["id"], dataset["anchor"]))
# Create a mapping of relevant documents (1 in our case) for each query
relevant_docs = {q_id: [q_id] for q_id in queries}
matryoshka_evaluators = []
for dim in matryoshka_dimensions:
ir_evaluator = InformationRetrievalEvaluator(
queries=queries,
corpus=corpus,
relevant_docs=relevant_docs,
name=f"dim_{dim}",
truncate_dim=dim,
score_functions={"cosine": cos_sim}
)
matryoshka_evaluators.append(ir_evaluator)
evaluator = SequentialEvaluator(matryoshka_evaluators)
results = evaluator(model)
scores_ndcg = []
scores_mrr = []
for dim in matryoshka_dimensions:
ndcg_key = f"dim_{dim}_cosine_ndcg@10"
mrr_key = f"dim_{dim}_cosine_mrr@10"
ndcg_score = results[ndcg_key] if ndcg_key in results else None
mrr_score = results[mrr_key] if mrr_key in results else None
evaluation_results.append({
"Dataset": dataset_info["name"],
"Dimension": dim,
"NDCG@10": ndcg_score,
"MRR@10": mrr_score
})
scores_ndcg.append(ndcg_score)
scores_mrr.append(mrr_score)
# Store scores by dataset for plot creation
scores_by_dataset[dataset_info["name"]] = {
"NDCG@10": scores_ndcg,
"MRR@10": scores_mrr
}
# Convert results to DataFrame for display
result_df = pd.DataFrame(evaluation_results)
# Generate bar charts for each dataset using Plotly
charts = []
color_scale_ndcg = '#a05195'
color_scale_mrr = '#2f4b7c'
for dataset_name, scores in scores_by_dataset.items():
fig = go.Figure()
# NDCG@10 bars
fig.add_trace(go.Bar(
x=[str(dim) for dim in matryoshka_dimensions],
y=scores["NDCG@10"],
name="NDCG@10",
marker_color=color_scale_ndcg,
text=[f"{score:.3f}" if score else "N/A" for score in scores["NDCG@10"]],
textposition='auto'
))
# MRR@10 bars
fig.add_trace(go.Bar(
x=[str(dim) for dim in matryoshka_dimensions],
y=scores["MRR@10"],
name="MRR@10",
marker_color=color_scale_mrr,
text=[f"{score:.3f}" if score else "N/A" for score in scores["MRR@10"]],
textposition='auto'
))
fig.update_layout(
title=f"{dataset_name} Evaluation",
xaxis_title="Embedding Dimension",
yaxis_title="Score",
barmode='group', # Group bars
template="plotly_white"
)
charts.append(fig)
return result_df, charts[0], charts[1], charts[2]
# Define the Gradio interface
def display_results(model_name, num_questions):
result_df, chart1, chart2, chart3 = evaluate_model(model_name, num_questions)
return result_df, chart1, chart2, chart3
# Gradio interface with a slider to choose the number of questions (1 to 500)
demo = gr.Interface(
fn=display_results,
inputs=[
gr.Textbox(label="Enter a Hugging Face Model ID",
placeholder="e.g., Omartificial-Intelligence-Space/GATE-AraBert-v1"),
gr.Slider(label="Number of Questions", minimum=1, maximum=500, step=1, value=500)
],
outputs=[
gr.Dataframe(label="Evaluation Results"),
gr.Plot(label="Financial Dataset"),
gr.Plot(label="MLQA Dataset"),
gr.Plot(label="ARCD Dataset")
],
title="Evaluation of Arabic Matroyshka Embedding on Retrieval Tasks",
description=(
"Evaluate your Embedding model or any Arabic Sentence Transformer model's performance on **context and question retrieval** for Arabic datasets for Enhancing RAG (Retrieval-Augmented Generation).\n"
"- **ARCD** evaluates short context retrieval performance.\n"
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
"**Evaluation Metrics:**\n"
"The evaluation uses **NDCG@10** and **MRR@10**, which measure how well the retrieved documents (contexts) match the query relevance.\n"
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
),
theme="default",
live=False,
css="footer {visibility: hidden;}"
)
demo.launch(debug=True)
# Add the footer
print("\nCreated by Omar Najar | Omartificial Intelligence Space")