Spaces:
Runtime error
Runtime error
import json | |
import numpy as np | |
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image | |
from tensorflow.keras.models import load_model | |
# Load the model | |
model_path = 'final_teath_classifier.h5' | |
model = tf.keras.models.load_model(model_path) | |
# Define preprocessing function | |
def preprocess_image(image): | |
# Resize the image to match input size | |
image = Image.fromarray(image) | |
image = image.resize((256, 256)) | |
# Convert image to array and preprocess input | |
img_array = np.array(image) / 255.0 | |
# Add batch dimension | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
# Define prediction function | |
def predict_image(image): | |
img_array = preprocess_image(image) | |
outputs = model(img_array) | |
predictions = tf.nn.softmax(outputs.logits, axis=-1) | |
predicted_class = np.argmax(predictions) | |
if predicted_class == 0: | |
predict_label = "Clean" | |
else: | |
predict_label = "Carries" | |
return {"prediction": predict_label, "confidence": float(np.max(predictions))} | |
# Create the interface | |
input_interface = gr.inputs.Image(shape=(256, 256, 3)) | |
output_interface = gr.outputs.Label(num_top_classes=2) | |
iface = gr.Interface(fn=predict_image, inputs=input_interface, outputs=output_interface) | |
# Launch the interface | |
iface.launch() | |