Spaces:
Running
Running
OmPrakashSingh1704
commited on
Commit
·
c5dcd31
1
Parent(s):
fbb1cf8
app.py
CHANGED
@@ -56,17 +56,82 @@ with gr.Blocks() as demo:
|
|
56 |
)
|
57 |
|
58 |
with gr.TabItem("Edit your Banner"):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
with gr.TabItem("Upgrade your Banner"):
|
72 |
img = gr.Image()
|
|
|
56 |
)
|
57 |
|
58 |
with gr.TabItem("Edit your Banner"):
|
59 |
+
with gr.Row():
|
60 |
+
with gr.Column():
|
61 |
+
input_image_editor_component = gr.ImageEditor(
|
62 |
+
label='Image',
|
63 |
+
type='pil',
|
64 |
+
sources=["upload", "webcam"],
|
65 |
+
image_mode='RGB',
|
66 |
+
layers=False,
|
67 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
input_text_component = gr.Text(
|
71 |
+
label="Prompt",
|
72 |
+
show_label=False,
|
73 |
+
max_lines=1,
|
74 |
+
placeholder="Enter your prompt",
|
75 |
+
container=False,
|
76 |
+
)
|
77 |
+
submit_button_component = gr.Button(
|
78 |
+
value='Submit', variant='primary', scale=0)
|
79 |
+
|
80 |
+
with gr.Accordion("Advanced Settings", open=False):
|
81 |
+
seed_slicer_component = gr.Slider(
|
82 |
+
label="Seed",
|
83 |
+
minimum=0,
|
84 |
+
maximum=MAX_SEED,
|
85 |
+
step=1,
|
86 |
+
value=42,
|
87 |
+
)
|
88 |
+
|
89 |
+
randomize_seed_checkbox_component = gr.Checkbox(
|
90 |
+
label="Randomize seed", value=True)
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
strength_slider_component = gr.Slider(
|
94 |
+
label="Strength",
|
95 |
+
info="Indicates extent to transform the reference `image`. "
|
96 |
+
"Must be between 0 and 1. `image` is used as a starting "
|
97 |
+
"point and more noise is added the higher the `strength`.",
|
98 |
+
minimum=0,
|
99 |
+
maximum=1,
|
100 |
+
step=0.01,
|
101 |
+
value=0.85,
|
102 |
+
)
|
103 |
+
|
104 |
+
num_inference_steps_slider_component = gr.Slider(
|
105 |
+
label="Number of inference steps",
|
106 |
+
info="The number of denoising steps. More denoising steps "
|
107 |
+
"usually lead to a higher quality image at the",
|
108 |
+
minimum=1,
|
109 |
+
maximum=50,
|
110 |
+
step=1,
|
111 |
+
value=20,
|
112 |
+
)
|
113 |
+
with gr.Column():
|
114 |
+
output_image_component = gr.Image(
|
115 |
+
type='pil', image_mode='RGB', label='Generated image', format="png")
|
116 |
+
with gr.Accordion("Debug", open=False):
|
117 |
+
output_mask_component = gr.Image(
|
118 |
+
type='pil', image_mode='RGB', label='Input mask', format="png")
|
119 |
+
with gr.Row():
|
120 |
+
submit_button_component.click(
|
121 |
+
fn=Banner.Image2Image,
|
122 |
+
inputs=[
|
123 |
+
input_image_editor_component,
|
124 |
+
input_text_component,
|
125 |
+
seed_slicer_component,
|
126 |
+
randomize_seed_checkbox_component,
|
127 |
+
strength_slider_component,
|
128 |
+
num_inference_steps_slider_component
|
129 |
+
],
|
130 |
+
outputs=[
|
131 |
+
output_image_component,
|
132 |
+
output_mask_component
|
133 |
+
]
|
134 |
+
)
|
135 |
|
136 |
with gr.TabItem("Upgrade your Banner"):
|
137 |
img = gr.Image()
|
options/Banner.py
CHANGED
@@ -8,8 +8,17 @@ def TextImage(prompt, width=1024, height=1024, guidance_scale=3.5,
|
|
8 |
img = T2I(prompt, width, height, guidance_scale, num_inference_steps)
|
9 |
return img
|
10 |
|
11 |
-
def Image2Image(prompt,image):
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def Image2Image_2(prompt,image,size,num_inference_steps=30):
|
15 |
return I2I_2(image, prompt,size,num_inference_steps)
|
|
|
8 |
img = T2I(prompt, width, height, guidance_scale, num_inference_steps)
|
9 |
return img
|
10 |
|
11 |
+
# def Image2Image(prompt,image):
|
12 |
+
# return I2I(image, prompt)
|
13 |
+
|
14 |
+
def Image2Image(
|
15 |
+
input_image_editor: dict,
|
16 |
+
input_text: str,
|
17 |
+
seed_slicer: int,
|
18 |
+
randomize_seed_checkbox: bool,
|
19 |
+
strength_slider: float,
|
20 |
+
num_inference_steps_slider: int,
|
21 |
+
):return I2I(input_image_editor,input_text,seed_slicer,randomize_seed_checkbox,strength_slider,num_inference_steps_slider)
|
22 |
|
23 |
def Image2Image_2(prompt,image,size,num_inference_steps=30):
|
24 |
return I2I_2(image, prompt,size,num_inference_steps)
|
options/Banner_Model/Image2Image.py
CHANGED
@@ -1,38 +1,23 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import numpy as np
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
-
import torch,random
|
5 |
-
# from .controlnet_flux import FluxControlNetModel
|
6 |
-
# from .transformer_flux import FluxTransformer2DModel
|
7 |
-
# from .pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
8 |
-
from typing import Tuple
|
9 |
from diffusers import FluxInpaintPipeline
|
10 |
-
|
11 |
-
|
12 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
print(f"Using device for I2I: {DEVICE}")
|
14 |
|
15 |
-
# # Load the inpainting pipeline
|
16 |
-
|
17 |
-
# def resize_image(image, height, width):
|
18 |
-
# """Resize image tensor to the desired height and width."""
|
19 |
-
# return torch.nn.functional.interpolate(image, size=(height, width), mode='nearest')
|
20 |
-
|
21 |
-
|
22 |
-
# def dummy(img):
|
23 |
-
# """Save the composite image and generate a mask from the alpha channel."""
|
24 |
-
# imageio.imwrite("output_image.png", img["composite"])
|
25 |
-
|
26 |
-
# # Extract alpha channel from the first layer to create the mask
|
27 |
-
# alpha_channel = img["layers"][0][:, :, 3]
|
28 |
-
# mask = np.where(alpha_channel == 0, 0, 255).astype(np.uint8)
|
29 |
-
|
30 |
-
# return img["background"], mask
|
31 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
32 |
|
33 |
def resize_image_dimensions(
|
34 |
original_resolution_wh: Tuple[int, int],
|
35 |
-
maximum_dimension: int =
|
36 |
) -> Tuple[int, int]:
|
37 |
width, height = original_resolution_wh
|
38 |
|
@@ -55,20 +40,19 @@ def resize_image_dimensions(
|
|
55 |
return new_width, new_height
|
56 |
|
57 |
|
58 |
-
|
59 |
def I2I(
|
60 |
-
input_image_editor,
|
61 |
input_text: str,
|
62 |
-
seed_slicer: int
|
63 |
-
randomize_seed_checkbox: bool
|
64 |
-
strength_slider: float
|
65 |
-
num_inference_steps_slider: int
|
66 |
-
progress=gr.Progress(track_tqdm=True)
|
67 |
-
|
68 |
if not input_text:
|
69 |
gr.Info("Please enter a text prompt.")
|
70 |
return None, None
|
71 |
-
print(type(input_image_editor),input_image_editor)
|
72 |
|
73 |
image = input_image_editor['background']
|
74 |
mask = input_image_editor['layers'][0]
|
@@ -80,6 +64,9 @@ def I2I(
|
|
80 |
if not mask:
|
81 |
gr.Info("Please draw a mask on the image.")
|
82 |
return None, None
|
|
|
|
|
|
|
83 |
|
84 |
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
85 |
resized_image = image.resize((width, height), Image.LANCZOS)
|
@@ -99,63 +86,4 @@ def I2I(
|
|
99 |
num_inference_steps=num_inference_steps_slider
|
100 |
).images[0]
|
101 |
print('INFERENCE DONE')
|
102 |
-
|
103 |
-
return result
|
104 |
-
|
105 |
-
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
106 |
-
image = image.convert("RGBA")
|
107 |
-
data = image.getdata()
|
108 |
-
new_data = []
|
109 |
-
for item in data:
|
110 |
-
avg = sum(item[:3]) / 3
|
111 |
-
if avg < threshold:
|
112 |
-
new_data.append((0, 0, 0, 0))
|
113 |
-
else:
|
114 |
-
new_data.append(item)
|
115 |
-
|
116 |
-
image.putdata(new_data)
|
117 |
-
return image
|
118 |
-
|
119 |
-
|
120 |
-
# def I2I(prompt, image, width=1024, height=1024, guidance_scale=8.0, num_inference_steps=20, strength=0.99):
|
121 |
-
|
122 |
-
# controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16)
|
123 |
-
# transformer = FluxTransformer2DModel.from_pretrained(
|
124 |
-
# "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
|
125 |
-
# )
|
126 |
-
# pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
127 |
-
# "black-forest-labs/FLUX.1-dev",
|
128 |
-
# controlnet=controlnet,
|
129 |
-
# transformer=transformer,
|
130 |
-
# torch_dtype=torch.bfloat16
|
131 |
-
# ).to(device)
|
132 |
-
# pipe.transformer.to(torch.bfloat16)
|
133 |
-
# pipe.controlnet.to(torch.bfloat16)
|
134 |
-
# pipe.set_attn_processor(FluxAttnProcessor2_0())
|
135 |
-
|
136 |
-
|
137 |
-
# img_url, mask = dummy(image)
|
138 |
-
|
139 |
-
# # Resize image and mask to the target dimensions (height x width)
|
140 |
-
# img_url = Image.fromarray(img_url, mode="RGB").resize((width, height))
|
141 |
-
# mask_url = Image.fromarray(mask,mode="L").resize((width, height))
|
142 |
-
|
143 |
-
# # Make sure both image and mask are converted into correct tensors
|
144 |
-
# generator = torch.Generator(device=device).manual_seed(0)
|
145 |
-
|
146 |
-
# # Generate the inpainted image
|
147 |
-
# result = pipe(
|
148 |
-
# prompt=prompt,
|
149 |
-
# height=size[1],
|
150 |
-
# width=size[0],
|
151 |
-
# control_image=image,
|
152 |
-
# control_mask=mask,
|
153 |
-
# num_inference_steps=28,
|
154 |
-
# generator=generator,
|
155 |
-
# controlnet_conditioning_scale=0.9,
|
156 |
-
# guidance_scale=3.5,
|
157 |
-
# negative_prompt="",
|
158 |
-
# true_guidance_scale=3.5
|
159 |
-
# ).images[0]
|
160 |
-
|
161 |
-
# return result
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import requests
|
4 |
+
import random,os
|
5 |
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
10 |
from diffusers import FluxInpaintPipeline
|
11 |
+
from huggingface_hub import login
|
12 |
+
login(token=os.getenv("TOKEN"))
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
IMAGE_SIZE = 1024
|
16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
def resize_image_dimensions(
|
19 |
original_resolution_wh: Tuple[int, int],
|
20 |
+
maximum_dimension: int = IMAGE_SIZE
|
21 |
) -> Tuple[int, int]:
|
22 |
width, height = original_resolution_wh
|
23 |
|
|
|
40 |
return new_width, new_height
|
41 |
|
42 |
|
43 |
+
@spaces.GPU(duration=100)
|
44 |
def I2I(
|
45 |
+
input_image_editor: dict,
|
46 |
input_text: str,
|
47 |
+
seed_slicer: int,
|
48 |
+
randomize_seed_checkbox: bool,
|
49 |
+
strength_slider: float,
|
50 |
+
num_inference_steps_slider: int,
|
51 |
+
progress=gr.Progress(track_tqdm=True)
|
52 |
+
):
|
53 |
if not input_text:
|
54 |
gr.Info("Please enter a text prompt.")
|
55 |
return None, None
|
|
|
56 |
|
57 |
image = input_image_editor['background']
|
58 |
mask = input_image_editor['layers'][0]
|
|
|
64 |
if not mask:
|
65 |
gr.Info("Please draw a mask on the image.")
|
66 |
return None, None
|
67 |
+
|
68 |
+
pipe = FluxInpaintPipeline.from_pretrained(
|
69 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(DEVICE)
|
70 |
|
71 |
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
72 |
resized_image = image.resize((width, height), Image.LANCZOS)
|
|
|
86 |
num_inference_steps=num_inference_steps_slider
|
87 |
).images[0]
|
88 |
print('INFERENCE DONE')
|
89 |
+
return result, resized_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
options/Banner_Model/__pycache__/Image2Image.cpython-310.pyc
CHANGED
Binary files a/options/Banner_Model/__pycache__/Image2Image.cpython-310.pyc and b/options/Banner_Model/__pycache__/Image2Image.cpython-310.pyc differ
|
|
options/__pycache__/Banner.cpython-310.pyc
CHANGED
Binary files a/options/__pycache__/Banner.cpython-310.pyc and b/options/__pycache__/Banner.cpython-310.pyc differ
|
|