import spaces
import torch,os,imageio
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
from glob import glob
from pathlib import Path
import numpy as np
# Check if CUDA (GPU) is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
def save_video(frames, save_path, fps, quality=9):
writer = imageio.get_writer(save_path, fps=fps, quality=quality)
for frame in frames:
frame = np.array(frame)
writer.append_data(frame)
writer.close()
# Function to generate the video
@spaces.GPU(duration=100)
def Video(image):
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16
).to(device)
# Enable model offloading if using the CPU
if device == "cpu":
pipeline.enable_model_cpu_offload()
else:
pipeline.enable_sequential_cpu_offload()
image = Image.fromarray(image)
image = image.resize((1024, 576))
# Set random seed for reproducibility
generator = torch.manual_seed(42)
output_folder= "outputs"
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# Generate the video frames
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
# Export the frames to a video file
export_to_video(frames, video_path, fps=7)
return video_path