Spaces:
Runtime error
Runtime error
Om-Alve
commited on
Commit
•
4739d3e
1
Parent(s):
96a6539
Initial commit
Browse files- quickdraw.h5 +3 -0
- requirements.txt +3 -0
- run.py +381 -0
quickdraw.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6cfa034f67b78907cbc9f741996318e91b5198cecb5b855b3ef8d0f447740c6
|
3 |
+
size 30093304
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tensorflow
|
3 |
+
pillow
|
run.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
labels = ['aircraft carrier',
|
2 |
+
'airplane',
|
3 |
+
'alarm clock',
|
4 |
+
'ambulance',
|
5 |
+
'angel',
|
6 |
+
'animal migration',
|
7 |
+
'ant',
|
8 |
+
'anvil',
|
9 |
+
'apple',
|
10 |
+
'arm',
|
11 |
+
'asparagus',
|
12 |
+
'axe',
|
13 |
+
'backpack',
|
14 |
+
'banana',
|
15 |
+
'bandage',
|
16 |
+
'barn',
|
17 |
+
'baseball bat',
|
18 |
+
'baseball',
|
19 |
+
'basket',
|
20 |
+
'basketball',
|
21 |
+
'bat',
|
22 |
+
'bathtub',
|
23 |
+
'beach',
|
24 |
+
'bear',
|
25 |
+
'beard',
|
26 |
+
'bed',
|
27 |
+
'bee',
|
28 |
+
'belt',
|
29 |
+
'bench',
|
30 |
+
'bicycle',
|
31 |
+
'binoculars',
|
32 |
+
'bird',
|
33 |
+
'birthday cake',
|
34 |
+
'blackberry',
|
35 |
+
'blueberry',
|
36 |
+
'book',
|
37 |
+
'boomerang',
|
38 |
+
'bottlecap',
|
39 |
+
'bowtie',
|
40 |
+
'bracelet',
|
41 |
+
'brain',
|
42 |
+
'bread',
|
43 |
+
'bridge',
|
44 |
+
'broccoli',
|
45 |
+
'broom',
|
46 |
+
'bucket',
|
47 |
+
'bulldozer',
|
48 |
+
'bus',
|
49 |
+
'bush',
|
50 |
+
'butterfly',
|
51 |
+
'cactus',
|
52 |
+
'cake',
|
53 |
+
'calculator',
|
54 |
+
'calendar',
|
55 |
+
'camel',
|
56 |
+
'camera',
|
57 |
+
'camouflage',
|
58 |
+
'campfire',
|
59 |
+
'candle',
|
60 |
+
'cannon',
|
61 |
+
'canoe',
|
62 |
+
'car',
|
63 |
+
'carrot',
|
64 |
+
'castle',
|
65 |
+
'cat',
|
66 |
+
'ceiling fan',
|
67 |
+
'cell phone',
|
68 |
+
'cello',
|
69 |
+
'chair',
|
70 |
+
'chandelier',
|
71 |
+
'church',
|
72 |
+
'circle',
|
73 |
+
'clarinet',
|
74 |
+
'clock',
|
75 |
+
'cloud',
|
76 |
+
'coffee cup',
|
77 |
+
'compass',
|
78 |
+
'computer',
|
79 |
+
'cookie',
|
80 |
+
'cooler',
|
81 |
+
'couch',
|
82 |
+
'cow',
|
83 |
+
'crab',
|
84 |
+
'crayon',
|
85 |
+
'crocodile',
|
86 |
+
'crown',
|
87 |
+
'cruise ship',
|
88 |
+
'cup',
|
89 |
+
'diamond',
|
90 |
+
'dishwasher',
|
91 |
+
'diving board',
|
92 |
+
'dog',
|
93 |
+
'dolphin',
|
94 |
+
'donut',
|
95 |
+
'door',
|
96 |
+
'dragon',
|
97 |
+
'dresser',
|
98 |
+
'drill',
|
99 |
+
'drums',
|
100 |
+
'duck',
|
101 |
+
'dumbbell',
|
102 |
+
'ear',
|
103 |
+
'elbow',
|
104 |
+
'elephant',
|
105 |
+
'envelope',
|
106 |
+
'eraser',
|
107 |
+
'eye',
|
108 |
+
'eyeglasses',
|
109 |
+
'face',
|
110 |
+
'fan',
|
111 |
+
'feather',
|
112 |
+
'fence',
|
113 |
+
'finger',
|
114 |
+
'fire hydrant',
|
115 |
+
'fireplace',
|
116 |
+
'firetruck',
|
117 |
+
'fish',
|
118 |
+
'flamingo',
|
119 |
+
'flashlight',
|
120 |
+
'flip flops',
|
121 |
+
'floor lamp',
|
122 |
+
'flower',
|
123 |
+
'flying saucer',
|
124 |
+
'foot',
|
125 |
+
'fork',
|
126 |
+
'frog',
|
127 |
+
'frying pan',
|
128 |
+
'garden hose',
|
129 |
+
'garden',
|
130 |
+
'giraffe',
|
131 |
+
'goatee',
|
132 |
+
'golf club',
|
133 |
+
'grapes',
|
134 |
+
'grass',
|
135 |
+
'guitar',
|
136 |
+
'hamburger',
|
137 |
+
'hammer',
|
138 |
+
'hand',
|
139 |
+
'harp',
|
140 |
+
'hat',
|
141 |
+
'headphones',
|
142 |
+
'hedgehog',
|
143 |
+
'helicopter',
|
144 |
+
'helmet',
|
145 |
+
'hexagon',
|
146 |
+
'hockey puck',
|
147 |
+
'hockey stick',
|
148 |
+
'horse',
|
149 |
+
'hospital',
|
150 |
+
'hot air balloon',
|
151 |
+
'hot dog',
|
152 |
+
'hot tub',
|
153 |
+
'hourglass',
|
154 |
+
'house plant',
|
155 |
+
'house',
|
156 |
+
'hurricane',
|
157 |
+
'ice cream',
|
158 |
+
'jacket',
|
159 |
+
'jail',
|
160 |
+
'kangaroo',
|
161 |
+
'key',
|
162 |
+
'keyboard',
|
163 |
+
'knee',
|
164 |
+
'knife',
|
165 |
+
'ladder',
|
166 |
+
'lantern',
|
167 |
+
'laptop',
|
168 |
+
'leaf',
|
169 |
+
'leg',
|
170 |
+
'light bulb',
|
171 |
+
'lighter',
|
172 |
+
'lighthouse',
|
173 |
+
'lightning',
|
174 |
+
'line',
|
175 |
+
'lion',
|
176 |
+
'lipstick',
|
177 |
+
'lobster',
|
178 |
+
'lollipop',
|
179 |
+
'mailbox',
|
180 |
+
'map',
|
181 |
+
'marker',
|
182 |
+
'matches',
|
183 |
+
'megaphone',
|
184 |
+
'mermaid',
|
185 |
+
'microphone',
|
186 |
+
'microwave',
|
187 |
+
'monkey',
|
188 |
+
'moon',
|
189 |
+
'mosquito',
|
190 |
+
'motorbike',
|
191 |
+
'mountain',
|
192 |
+
'mouse',
|
193 |
+
'moustache',
|
194 |
+
'mouth',
|
195 |
+
'mug',
|
196 |
+
'mushroom',
|
197 |
+
'nail',
|
198 |
+
'necklace',
|
199 |
+
'nose',
|
200 |
+
'ocean',
|
201 |
+
'octagon',
|
202 |
+
'octopus',
|
203 |
+
'onion',
|
204 |
+
'oven',
|
205 |
+
'owl',
|
206 |
+
'paint can',
|
207 |
+
'paintbrush',
|
208 |
+
'palm tree',
|
209 |
+
'panda',
|
210 |
+
'pants',
|
211 |
+
'paper clip',
|
212 |
+
'parachute',
|
213 |
+
'parrot',
|
214 |
+
'passport',
|
215 |
+
'peanut',
|
216 |
+
'pear',
|
217 |
+
'peas',
|
218 |
+
'pencil',
|
219 |
+
'penguin',
|
220 |
+
'piano',
|
221 |
+
'pickup truck',
|
222 |
+
'picture frame',
|
223 |
+
'pig',
|
224 |
+
'pillow',
|
225 |
+
'pineapple',
|
226 |
+
'pizza',
|
227 |
+
'pliers',
|
228 |
+
'police car',
|
229 |
+
'pond',
|
230 |
+
'pool',
|
231 |
+
'popsicle',
|
232 |
+
'postcard',
|
233 |
+
'potato',
|
234 |
+
'power outlet',
|
235 |
+
'purse',
|
236 |
+
'rabbit',
|
237 |
+
'raccoon',
|
238 |
+
'radio',
|
239 |
+
'rain',
|
240 |
+
'rainbow',
|
241 |
+
'rake',
|
242 |
+
'remote control',
|
243 |
+
'rhinoceros',
|
244 |
+
'rifle',
|
245 |
+
'river',
|
246 |
+
'roller coaster',
|
247 |
+
'rollerskates',
|
248 |
+
'sailboat',
|
249 |
+
'sandwich',
|
250 |
+
'saw',
|
251 |
+
'saxophone',
|
252 |
+
'school bus',
|
253 |
+
'scissors',
|
254 |
+
'scorpion',
|
255 |
+
'screwdriver',
|
256 |
+
'sea turtle',
|
257 |
+
'see saw',
|
258 |
+
'shark',
|
259 |
+
'sheep',
|
260 |
+
'shoe',
|
261 |
+
'shorts',
|
262 |
+
'shovel',
|
263 |
+
'sink',
|
264 |
+
'skateboard',
|
265 |
+
'skull',
|
266 |
+
'skyscraper',
|
267 |
+
'sleeping bag',
|
268 |
+
'smiley face',
|
269 |
+
'snail',
|
270 |
+
'snake',
|
271 |
+
'snorkel',
|
272 |
+
'snowflake',
|
273 |
+
'snowman',
|
274 |
+
'soccer ball',
|
275 |
+
'sock',
|
276 |
+
'speedboat',
|
277 |
+
'spider',
|
278 |
+
'spoon',
|
279 |
+
'spreadsheet',
|
280 |
+
'square',
|
281 |
+
'squiggle',
|
282 |
+
'squirrel',
|
283 |
+
'stairs',
|
284 |
+
'star',
|
285 |
+
'steak',
|
286 |
+
'stereo',
|
287 |
+
'stethoscope',
|
288 |
+
'stitches',
|
289 |
+
'stop sign',
|
290 |
+
'stove',
|
291 |
+
'strawberry',
|
292 |
+
'streetlight',
|
293 |
+
'string bean',
|
294 |
+
'submarine',
|
295 |
+
'suitcase',
|
296 |
+
'sun',
|
297 |
+
'swan',
|
298 |
+
'sweater',
|
299 |
+
'swing set',
|
300 |
+
'sword',
|
301 |
+
'syringe',
|
302 |
+
't-shirt',
|
303 |
+
'table',
|
304 |
+
'teapot',
|
305 |
+
'teddy-bear',
|
306 |
+
'telephone',
|
307 |
+
'television',
|
308 |
+
'tennis racquet',
|
309 |
+
'tent',
|
310 |
+
'The Eiffel Tower',
|
311 |
+
'The Great Wall of China',
|
312 |
+
'The Mona Lisa',
|
313 |
+
'tiger',
|
314 |
+
'toaster',
|
315 |
+
'toe',
|
316 |
+
'toilet',
|
317 |
+
'tooth',
|
318 |
+
'toothbrush',
|
319 |
+
'toothpaste',
|
320 |
+
'tornado',
|
321 |
+
'tractor',
|
322 |
+
'traffic light',
|
323 |
+
'train',
|
324 |
+
'tree',
|
325 |
+
'triangle',
|
326 |
+
'trombone',
|
327 |
+
'truck',
|
328 |
+
'trumpet',
|
329 |
+
'umbrella',
|
330 |
+
'underwear',
|
331 |
+
'van',
|
332 |
+
'vase',
|
333 |
+
'violin',
|
334 |
+
'washing machine',
|
335 |
+
'watermelon',
|
336 |
+
'waterslide',
|
337 |
+
'whale',
|
338 |
+
'wheel',
|
339 |
+
'windmill',
|
340 |
+
'wine bottle',
|
341 |
+
'wine glass',
|
342 |
+
'wristwatch',
|
343 |
+
'yoga',
|
344 |
+
'zebra',
|
345 |
+
'zigzag']
|
346 |
+
|
347 |
+
from PIL import Image
|
348 |
+
import numpy as np
|
349 |
+
import tensorflow as tf
|
350 |
+
|
351 |
+
imgs = []
|
352 |
+
def predict(img):
|
353 |
+
img = img['layers'][0][:,:,3]
|
354 |
+
imgs.append(img)
|
355 |
+
image_pil = Image.fromarray(img)
|
356 |
+
|
357 |
+
# Resize the image using PIL
|
358 |
+
new_size = (28, 28) # Set the new size (e.g., 100x100)
|
359 |
+
resized_image_pil = image_pil.resize(new_size)
|
360 |
+
|
361 |
+
# Convert the resized PIL image back to a NumPy array
|
362 |
+
resized_image_np = np.array(resized_image_pil)
|
363 |
+
# imgs.append(img)
|
364 |
+
img = np.array(resized_image_np).reshape(1, 28, 28,1)
|
365 |
+
out = model.predict(img);
|
366 |
+
top5 = np.argsort(out[0])[::-1][:5]
|
367 |
+
label = labels
|
368 |
+
|
369 |
+
# Create a dictionary with label-probability pairs for the top 5 predictions
|
370 |
+
probabilities = {label[i]: float(out[0][i]) for i in top5}
|
371 |
+
|
372 |
+
return probabilities
|
373 |
+
|
374 |
+
model = tf.keras.models.load_model('quickdraw.h5', compile=False)
|
375 |
+
|
376 |
+
import gradio as gr
|
377 |
+
|
378 |
+
gr.Interface(fn=predict,
|
379 |
+
inputs=gr.Sketchpad(),
|
380 |
+
outputs="label",
|
381 |
+
live=True).launch()
|