Adding a dummy implementation of Whisper for testing
Browse files- app.py +1 -0
- src/whisper/dummyWhisperContainer.py +101 -0
- src/whisper/whisperFactory.py +4 -0
app.py
CHANGED
@@ -624,4 +624,5 @@ if __name__ == '__main__':
|
|
624 |
if (threads := args.pop("threads")) > 0:
|
625 |
torch.set_num_threads(threads)
|
626 |
|
|
|
627 |
create_ui(app_config=updated_config)
|
|
|
624 |
if (threads := args.pop("threads")) > 0:
|
625 |
torch.set_num_threads(threads)
|
626 |
|
627 |
+
print("Using whisper implementation: " + updated_config.whisper_implementation)
|
628 |
create_ui(app_config=updated_config)
|
src/whisper/dummyWhisperContainer.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import ffmpeg
|
4 |
+
from src.config import ModelConfig
|
5 |
+
from src.hooks.progressListener import ProgressListener
|
6 |
+
from src.modelCache import ModelCache
|
7 |
+
from src.prompts.abstractPromptStrategy import AbstractPromptStrategy
|
8 |
+
from src.whisper.abstractWhisperContainer import AbstractWhisperCallback, AbstractWhisperContainer
|
9 |
+
|
10 |
+
class DummyWhisperContainer(AbstractWhisperContainer):
|
11 |
+
def __init__(self, model_name: str, device: str = None, compute_type: str = "float16",
|
12 |
+
download_root: str = None,
|
13 |
+
cache: ModelCache = None, models: List[ModelConfig] = []):
|
14 |
+
super().__init__(model_name, device, compute_type, download_root, cache, models)
|
15 |
+
|
16 |
+
def ensure_downloaded(self):
|
17 |
+
"""
|
18 |
+
Ensure that the model is downloaded. This is useful if you want to ensure that the model is downloaded before
|
19 |
+
passing the container to a subprocess.
|
20 |
+
"""
|
21 |
+
print("[Dummy] Ensuring that the model is downloaded")
|
22 |
+
|
23 |
+
def _create_model(self):
|
24 |
+
print("[Dummy] Creating dummy whisper model " + self.model_name + " for device " + str(self.device))
|
25 |
+
return None
|
26 |
+
|
27 |
+
def create_callback(self, language: str = None, task: str = None,
|
28 |
+
prompt_strategy: AbstractPromptStrategy = None,
|
29 |
+
**decodeOptions: dict) -> AbstractWhisperCallback:
|
30 |
+
"""
|
31 |
+
Create a WhisperCallback object that can be used to transcript audio files.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
language: str
|
36 |
+
The target language of the transcription. If not specified, the language will be inferred from the audio content.
|
37 |
+
task: str
|
38 |
+
The task - either translate or transcribe.
|
39 |
+
prompt_strategy: AbstractPromptStrategy
|
40 |
+
The prompt strategy to use. If not specified, the prompt from Whisper will be used.
|
41 |
+
decodeOptions: dict
|
42 |
+
Additional options to pass to the decoder. Must be pickleable.
|
43 |
+
|
44 |
+
Returns
|
45 |
+
-------
|
46 |
+
A WhisperCallback object.
|
47 |
+
"""
|
48 |
+
return DummyWhisperCallback(self, language=language, task=task, prompt_strategy=prompt_strategy, **decodeOptions)
|
49 |
+
|
50 |
+
class DummyWhisperCallback(AbstractWhisperCallback):
|
51 |
+
def __init__(self, model_container: DummyWhisperContainer, **decodeOptions: dict):
|
52 |
+
self.model_container = model_container
|
53 |
+
self.decodeOptions = decodeOptions
|
54 |
+
|
55 |
+
def invoke(self, audio, segment_index: int, prompt: str, detected_language: str, progress_listener: ProgressListener = None):
|
56 |
+
"""
|
57 |
+
Peform the transcription of the given audio file or data.
|
58 |
+
|
59 |
+
Parameters
|
60 |
+
----------
|
61 |
+
audio: Union[str, np.ndarray, torch.Tensor]
|
62 |
+
The audio file to transcribe, or the audio data as a numpy array or torch tensor.
|
63 |
+
segment_index: int
|
64 |
+
The target language of the transcription. If not specified, the language will be inferred from the audio content.
|
65 |
+
task: str
|
66 |
+
The task - either translate or transcribe.
|
67 |
+
progress_listener: ProgressListener
|
68 |
+
A callback to receive progress updates.
|
69 |
+
"""
|
70 |
+
print("[Dummy] Invoking dummy whisper callback for segment " + str(segment_index))
|
71 |
+
|
72 |
+
# Estimate length
|
73 |
+
if isinstance(audio, str):
|
74 |
+
audio_length = ffmpeg.probe(audio)["format"]["duration"]
|
75 |
+
# Format is pcm_s16le at a sample rate of 16000, loaded as a float32 array.
|
76 |
+
else:
|
77 |
+
audio_length = len(audio) / 16000
|
78 |
+
|
79 |
+
# Convert the segments to a format that is easier to serialize
|
80 |
+
whisper_segments = [{
|
81 |
+
"text": "Dummy text for segment " + str(segment_index),
|
82 |
+
"start": 0,
|
83 |
+
"end": audio_length,
|
84 |
+
|
85 |
+
# Extra fields added by faster-whisper
|
86 |
+
"words": []
|
87 |
+
}]
|
88 |
+
|
89 |
+
result = {
|
90 |
+
"segments": whisper_segments,
|
91 |
+
"text": "Dummy text for segment " + str(segment_index),
|
92 |
+
"language": "en" if detected_language is None else detected_language,
|
93 |
+
|
94 |
+
# Extra fields added by faster-whisper
|
95 |
+
"language_probability": 1.0,
|
96 |
+
"duration": audio_length,
|
97 |
+
}
|
98 |
+
|
99 |
+
if progress_listener is not None:
|
100 |
+
progress_listener.on_finished()
|
101 |
+
return result
|
src/whisper/whisperFactory.py
CHANGED
@@ -15,5 +15,9 @@ def create_whisper_container(whisper_implementation: str,
|
|
15 |
elif (whisper_implementation == "faster-whisper" or whisper_implementation == "faster_whisper"):
|
16 |
from src.whisper.fasterWhisperContainer import FasterWhisperContainer
|
17 |
return FasterWhisperContainer(model_name=model_name, device=device, compute_type=compute_type, download_root=download_root, cache=cache, models=models)
|
|
|
|
|
|
|
|
|
18 |
else:
|
19 |
raise ValueError("Unknown Whisper implementation: " + whisper_implementation)
|
|
|
15 |
elif (whisper_implementation == "faster-whisper" or whisper_implementation == "faster_whisper"):
|
16 |
from src.whisper.fasterWhisperContainer import FasterWhisperContainer
|
17 |
return FasterWhisperContainer(model_name=model_name, device=device, compute_type=compute_type, download_root=download_root, cache=cache, models=models)
|
18 |
+
elif (whisper_implementation == "dummy-whisper" or whisper_implementation == "dummy_whisper" or whisper_implementation == "dummy"):
|
19 |
+
# This is useful for testing
|
20 |
+
from src.whisper.dummyWhisperContainer import DummyWhisperContainer
|
21 |
+
return DummyWhisperContainer(model_name=model_name, device=device, compute_type=compute_type, download_root=download_root, cache=cache, models=models)
|
22 |
else:
|
23 |
raise ValueError("Unknown Whisper implementation: " + whisper_implementation)
|