Spaces:
Runtime error
Runtime error
Oliver Li
commited on
Commit
•
809559e
1
Parent(s):
46d426f
milestone3
Browse files- app.py +49 -18
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,23 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
3 |
|
4 |
# Function to load the pre-trained model
|
5 |
def load_model(model_name):
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
-
|
9 |
-
return sentiment_pipeline
|
10 |
|
11 |
# Streamlit app
|
12 |
-
st.title("
|
13 |
-
st.write("Enter a text and select
|
14 |
|
15 |
# Input text
|
16 |
-
default_text = "I
|
17 |
text = st.text_input("Enter your text:", value=default_text)
|
18 |
|
|
|
|
|
|
|
19 |
# Model selection
|
20 |
model_options = {
|
|
|
|
|
|
|
21 |
"distilbert-base-uncased-finetuned-sst-2-english": {
|
22 |
"labels": ["NEGATIVE", "POSITIVE"],
|
23 |
"description": "This model classifies text into positive or negative sentiment. It is based on DistilBERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.",
|
@@ -31,24 +37,49 @@ model_options = {
|
|
31 |
"description": "This model classifies tweets into negative (LABEL_0), neutral(LABEL_1), or positive(LABEL_2) sentiment. It is based on RoBERTa and fine-tuned on a large dataset of tweets.",
|
32 |
},
|
33 |
}
|
34 |
-
selected_model = st.selectbox("Choose a
|
35 |
|
36 |
st.write("### Model Information")
|
37 |
-
st.write(f"**Labels:** {', '.join(model_options[selected_model]['labels'])}")
|
38 |
st.write(f"**Description:** {model_options[selected_model]['description']}")
|
39 |
|
40 |
-
# Load the model and perform
|
41 |
if st.button("Analyze"):
|
42 |
if not text:
|
43 |
st.write("Please enter a text.")
|
44 |
else:
|
45 |
-
with st.spinner("Analyzing
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
else:
|
54 |
-
st.write("Enter a text and click 'Analyze' to perform
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
|
5 |
# Function to load the pre-trained model
|
6 |
def load_model(model_name):
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
return tokenizer, model
|
|
|
10 |
|
11 |
# Streamlit app
|
12 |
+
st.title("Multi-label Toxicity Detection App")
|
13 |
+
st.write("Enter a text and select the fine-tuned model to get the toxicity analysis.")
|
14 |
|
15 |
# Input text
|
16 |
+
default_text = "I will kill you if you do not give me my pop tarts."
|
17 |
text = st.text_input("Enter your text:", value=default_text)
|
18 |
|
19 |
+
category = {'LABEL_0': 'toxic', 'LABEL_1': 'severe_toxic', 'LABEL_2': 'obscene', 'LABEL_3': 'threat', 'LABEL_4': 'insult', 'LABEL_5': 'identity_hate'}
|
20 |
+
|
21 |
+
|
22 |
# Model selection
|
23 |
model_options = {
|
24 |
+
"Olivernyu/finetuned_bert_base_uncased": {
|
25 |
+
"description": "This model detects different types of toxicity like threats, obscenity, insults, and identity-based hate in text.",
|
26 |
+
},
|
27 |
"distilbert-base-uncased-finetuned-sst-2-english": {
|
28 |
"labels": ["NEGATIVE", "POSITIVE"],
|
29 |
"description": "This model classifies text into positive or negative sentiment. It is based on DistilBERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.",
|
|
|
37 |
"description": "This model classifies tweets into negative (LABEL_0), neutral(LABEL_1), or positive(LABEL_2) sentiment. It is based on RoBERTa and fine-tuned on a large dataset of tweets.",
|
38 |
},
|
39 |
}
|
40 |
+
selected_model = st.selectbox("Choose a fine-tuned model:", model_options)
|
41 |
|
42 |
st.write("### Model Information")
|
|
|
43 |
st.write(f"**Description:** {model_options[selected_model]['description']}")
|
44 |
|
45 |
+
# Load the model and perform toxicity analysis
|
46 |
if st.button("Analyze"):
|
47 |
if not text:
|
48 |
st.write("Please enter a text.")
|
49 |
else:
|
50 |
+
with st.spinner("Analyzing toxicity..."):
|
51 |
+
if selected_model == "Olivernyu/finetuned_bert_base_uncased":
|
52 |
+
tokenizer, model = load_model(selected_model)
|
53 |
+
toxicity_detector = pipeline("text-classification", tokenizer=tokenizer, model=model)
|
54 |
+
outputs = toxicity_detector(text, top_k=2)
|
55 |
+
|
56 |
+
category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
57 |
+
scores = [output["score"] for output in outputs[0]]
|
58 |
+
|
59 |
+
# Get the highest toxicity class and its probability
|
60 |
+
max_score_index = scores.index(max(scores))
|
61 |
+
highest_toxicity_class = category_names[max_score_index]
|
62 |
+
highest_probability = scores[max_score_index]
|
63 |
+
|
64 |
+
results = []
|
65 |
+
for item in outputs:
|
66 |
+
results.append((category[item['label']], item['score']))
|
67 |
+
|
68 |
+
# Create a table with the input text (or a portion of it), the highest toxicity class, and its probability
|
69 |
+
table_data = {
|
70 |
+
"Text (portion)": [text[:50]],
|
71 |
+
f"{results[0][0]}": results[0][1],
|
72 |
+
f"{results[1][0]}": results[1][1]
|
73 |
+
}
|
74 |
+
table_df = pd.DataFrame(table_data)
|
75 |
+
st.table(table_df)
|
76 |
+
else:
|
77 |
+
sentiment_pipeline = load_model(selected_model)
|
78 |
+
result = sentiment_pipeline(text)
|
79 |
+
st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")
|
80 |
+
if result[0]['label'] in ['POSITIVE', 'LABEL_1'] and result[0]['score']> 0.9:
|
81 |
+
st.balloons()
|
82 |
+
elif result[0]['label'] in ['NEGATIVE', 'LABEL_0'] and result[0]['score']> 0.9:
|
83 |
+
st.error("Hater detected.")
|
84 |
else:
|
85 |
+
st.write("Enter a text and click 'Analyze' to perform toxicity analysis.")
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
streamlit
|
2 |
torch
|
3 |
transformers
|
|
|
|
1 |
streamlit
|
2 |
torch
|
3 |
transformers
|
4 |
+
pandas
|