Spaces:
Sleeping
Sleeping
Commit
·
59cce6a
1
Parent(s):
3dc8b9b
docs: Finalize project files and fix Gradio SDK version
Browse files- app.py +113 -0
- data/pokemon_final_with_labels.csv +3 -0
- data/scaler.pkl +3 -0
- model/config.json +70 -0
- model/model.safetensors +3 -0
- network.py +23 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import joblib
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import re
|
| 8 |
+
from safetensors.torch import load_file
|
| 9 |
+
from typing import List, Tuple
|
| 10 |
+
from network import PricePredictor
|
| 11 |
+
|
| 12 |
+
MODEL_DIR = "model"
|
| 13 |
+
DATA_DIR = "data"
|
| 14 |
+
SCALER_PATH = os.path.join(DATA_DIR, "scaler.pkl")
|
| 15 |
+
DATA_PATH = os.path.join(DATA_DIR, "pokemon_final_with_labels.csv")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def load_model_and_config(model_dir: str) -> Tuple[torch.nn.Module, List[str]]:
|
| 19 |
+
config_path = os.path.join(model_dir, "config.json")
|
| 20 |
+
with open(config_path, "r") as f:
|
| 21 |
+
model_config = json.load(f)
|
| 22 |
+
|
| 23 |
+
model = PricePredictor(input_size=model_config["input_size"])
|
| 24 |
+
weights_path = os.path.join(model_dir, "model.safetensors")
|
| 25 |
+
model.load_state_dict(load_file(weights_path))
|
| 26 |
+
model.eval()
|
| 27 |
+
return model, model_config["feature_columns"]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def perform_prediction(model: torch.nn.Module, scaler, input_features: pd.Series) -> Tuple[bool, float]:
|
| 31 |
+
features_np = input_features.to_numpy(dtype="float32").reshape(1, -1)
|
| 32 |
+
features_scaled = scaler.transform(features_np)
|
| 33 |
+
features_tensor = torch.tensor(features_scaled, dtype=torch.float32)
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
logit = model(features_tensor)
|
| 37 |
+
probability = torch.sigmoid(logit).item()
|
| 38 |
+
predicted_class = bool(round(probability))
|
| 39 |
+
|
| 40 |
+
return predicted_class, probability
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
model, feature_columns = load_model_and_config(MODEL_DIR)
|
| 44 |
+
scaler = joblib.load(SCALER_PATH)
|
| 45 |
+
full_data = pd.read_csv(DATA_PATH)
|
| 46 |
+
|
| 47 |
+
full_data['display_name'] = full_data.apply(
|
| 48 |
+
lambda row: f"{row['name']} (ID: {row['tcgplayer_id']})", axis=1
|
| 49 |
+
)
|
| 50 |
+
card_choices = sorted(full_data['display_name'].unique().tolist())
|
| 51 |
+
ASSETS_LOADED = True
|
| 52 |
+
except FileNotFoundError as e:
|
| 53 |
+
print(f"Error loading necessary files: {e}")
|
| 54 |
+
print("Please make sure you have uploaded the 'model' and 'data' directories to your Hugging Face Space.")
|
| 55 |
+
card_choices = ["Error: Model or data files not found. Check logs."]
|
| 56 |
+
ASSETS_LOADED = False
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def predict_price_trend(card_display_name: str) -> str:
|
| 60 |
+
if not ASSETS_LOADED:
|
| 61 |
+
return "## Application Error\nAssets could not be loaded. Please check the logs on Hugging Face Spaces for details. You may need to upload your `model` and `data` directories."
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
tcgplayer_id = int(re.search(r'\(ID: (\d+)\)', card_display_name).group(1))
|
| 65 |
+
except (AttributeError, ValueError):
|
| 66 |
+
return f"## Input Error\nCould not parse ID from '{card_display_name}'. Please select a valid card from the dropdown."
|
| 67 |
+
|
| 68 |
+
card_data = full_data[full_data['tcgplayer_id'] == tcgplayer_id]
|
| 69 |
+
if card_data.empty:
|
| 70 |
+
return f"## Internal Error\nCould not find data for ID {tcgplayer_id}. Please restart the Space or select another card."
|
| 71 |
+
|
| 72 |
+
card_sample = card_data.iloc[0]
|
| 73 |
+
sample_features = card_sample[feature_columns]
|
| 74 |
+
|
| 75 |
+
predicted_class, probability = perform_prediction(model, scaler, sample_features)
|
| 76 |
+
|
| 77 |
+
prediction_text = "**RISE**" if predicted_class else "**NOT RISE**"
|
| 78 |
+
confidence = probability if predicted_class else 1 - probability
|
| 79 |
+
|
| 80 |
+
target_col = 'price_will_rise_30_in_6m' # NOTE: Assumed target column name. Change if yours is different.
|
| 81 |
+
true_label_text = ""
|
| 82 |
+
if target_col in card_sample and pd.notna(card_sample[target_col]):
|
| 83 |
+
true_label = bool(card_sample[target_col])
|
| 84 |
+
true_label_text = f"\n- **Actual Result in Dataset:** The price did **{'RISE' if true_label else 'NOT RISE'}**."
|
| 85 |
+
|
| 86 |
+
output = f"""
|
| 87 |
+
## 🔮 Prediction Report for {card_sample['name']}
|
| 88 |
+
- **Prediction:** The model predicts the card's price will {prediction_text} by 30% in the next 6 months.
|
| 89 |
+
- **Confidence:** {confidence:.2%}
|
| 90 |
+
{true_label_text}
|
| 91 |
+
"""
|
| 92 |
+
return output
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
iface = gr.Interface(
|
| 96 |
+
fn=predict_price_trend,
|
| 97 |
+
inputs=gr.Dropdown(
|
| 98 |
+
choices=card_choices,
|
| 99 |
+
label="Select a Pokémon Card",
|
| 100 |
+
info="Choose a card from the dataset to predict its price trend."
|
| 101 |
+
),
|
| 102 |
+
outputs=gr.Markdown(),
|
| 103 |
+
title="PricePoke: Pokémon Card Price Trend Predictor",
|
| 104 |
+
description="""
|
| 105 |
+
Select a Pokémon card to predict whether its market price will increase by 30% or more over the next 6 months.
|
| 106 |
+
This model was trained on historical TCGPlayer market data.
|
| 107 |
+
""",
|
| 108 |
+
examples=[[card_choices[0]] if card_choices and ASSETS_LOADED else []],
|
| 109 |
+
allow_flagging="never"
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
if __name__ == "__main__":
|
| 113 |
+
iface.launch()
|
data/pokemon_final_with_labels.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e338ce22e2d28270c7b5eaa18fdad4b8465b1e1bf83dc085372c542aa11f092e
|
| 3 |
+
size 8231628
|
data/scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:57bae1c7e9c16028c4f21def0302ba1514e7a3d8be131937702da75007ccd866
|
| 3 |
+
size 2151
|
model/config.json
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"input_size": 64,
|
| 3 |
+
"model_class": "PricePredictor",
|
| 4 |
+
"feature_columns": [
|
| 5 |
+
"rawPrice",
|
| 6 |
+
"gradedPriceTen",
|
| 7 |
+
"gradedPriceNine",
|
| 8 |
+
"first_raw",
|
| 9 |
+
"price_ratio_to_first",
|
| 10 |
+
"log_raw",
|
| 11 |
+
"log_g10",
|
| 12 |
+
"log_g9",
|
| 13 |
+
"price_vs_rolling_avg",
|
| 14 |
+
"rawPrice_missing",
|
| 15 |
+
"gradedPriceTen_missing",
|
| 16 |
+
"gradedPriceNine_missing",
|
| 17 |
+
"rarity_ACE SPEC Rare",
|
| 18 |
+
"rarity_Amazing Rare",
|
| 19 |
+
"rarity_Black White Rare",
|
| 20 |
+
"rarity_Classic Collection",
|
| 21 |
+
"rarity_Code Card",
|
| 22 |
+
"rarity_Common",
|
| 23 |
+
"rarity_Double Rare",
|
| 24 |
+
"rarity_Holo Rare",
|
| 25 |
+
"rarity_Hyper Rare",
|
| 26 |
+
"rarity_Illustration Rare",
|
| 27 |
+
"rarity_Prism Rare",
|
| 28 |
+
"rarity_Promo",
|
| 29 |
+
"rarity_Radiant Rare",
|
| 30 |
+
"rarity_Rare",
|
| 31 |
+
"rarity_Rare Ace",
|
| 32 |
+
"rarity_Rare BREAK",
|
| 33 |
+
"rarity_Secret Rare",
|
| 34 |
+
"rarity_Shiny Holo Rare",
|
| 35 |
+
"rarity_Shiny Rare",
|
| 36 |
+
"rarity_Shiny Ultra Rare",
|
| 37 |
+
"rarity_Special Illustration Rare",
|
| 38 |
+
"rarity_Ultra Rare",
|
| 39 |
+
"rarity_Uncommon",
|
| 40 |
+
"energyType_Colorless",
|
| 41 |
+
"energyType_Darkness",
|
| 42 |
+
"energyType_Dragon",
|
| 43 |
+
"energyType_Energy",
|
| 44 |
+
"energyType_Fairy",
|
| 45 |
+
"energyType_Fighting",
|
| 46 |
+
"energyType_Fire",
|
| 47 |
+
"energyType_Grass",
|
| 48 |
+
"energyType_Lightning",
|
| 49 |
+
"energyType_Metal",
|
| 50 |
+
"energyType_Psychic",
|
| 51 |
+
"energyType_Water",
|
| 52 |
+
"energyType_nan",
|
| 53 |
+
"cardType_Energy",
|
| 54 |
+
"cardType_Item",
|
| 55 |
+
"cardType_Pokemon",
|
| 56 |
+
"cardType_Stadium",
|
| 57 |
+
"cardType_Supporter",
|
| 58 |
+
"cardType_Tool",
|
| 59 |
+
"cardType_Trainer",
|
| 60 |
+
"cardType_nan",
|
| 61 |
+
"variant_1st Edition",
|
| 62 |
+
"variant_1st Edition Holofoil",
|
| 63 |
+
"variant_Holofoil",
|
| 64 |
+
"variant_Normal",
|
| 65 |
+
"variant_Reverse Holofoil",
|
| 66 |
+
"variant_Unlimited",
|
| 67 |
+
"variant_Unlimited Holofoil",
|
| 68 |
+
"variant_nan"
|
| 69 |
+
]
|
| 70 |
+
}
|
model/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38b217807a8bf227beba2a74448010f2234742071f415f52ea9429915d37cd54
|
| 3 |
+
size 199132
|
network.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
Neural Network Classifier Architecture
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
class PricePredictor(nn.Module):
|
| 9 |
+
|
| 10 |
+
def __init__(self, input_size: int):
|
| 11 |
+
super(PricePredictor, self).__init__()
|
| 12 |
+
self.model = nn.Sequential(
|
| 13 |
+
nn.Linear(input_size, 256),
|
| 14 |
+
nn.ReLU(),
|
| 15 |
+
nn.Dropout(0.4),
|
| 16 |
+
nn.Linear(256, 128),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
nn.Dropout(0.4),
|
| 19 |
+
nn.Linear(128, 1),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 23 |
+
return self.model(x)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
scikit-learn
|
| 5 |
+
safetensors
|
| 6 |
+
gradio
|