Spaces:
Runtime error
Runtime error
| import torch | |
| import accelerate.accelerator | |
| from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous | |
| accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x | |
| def LayerNorm_forward(self, x): | |
| return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x) | |
| LayerNorm.forward = LayerNorm_forward | |
| torch.nn.LayerNorm.forward = LayerNorm_forward | |
| def FP32LayerNorm_forward(self, x): | |
| origin_dtype = x.dtype | |
| return torch.nn.functional.layer_norm( | |
| x.float(), | |
| self.normalized_shape, | |
| self.weight.float() if self.weight is not None else None, | |
| self.bias.float() if self.bias is not None else None, | |
| self.eps, | |
| ).to(origin_dtype) | |
| FP32LayerNorm.forward = FP32LayerNorm_forward | |
| def RMSNorm_forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
| if self.weight is None: | |
| return hidden_states.to(input_dtype) | |
| return hidden_states.to(input_dtype) * self.weight.to(input_dtype) | |
| RMSNorm.forward = RMSNorm_forward | |
| def AdaLayerNormContinuous_forward(self, x, conditioning_embedding): | |
| emb = self.linear(self.silu(conditioning_embedding)) | |
| scale, shift = emb.chunk(2, dim=1) | |
| x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
| return x | |
| AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward | |