Spaces:
Running
on
Zero
Running
on
Zero
| # Better Flow Matching UniPC by Lvmin Zhang | |
| # (c) 2025 | |
| # CC BY-SA 4.0 | |
| # Attribution-ShareAlike 4.0 International Licence | |
| import torch | |
| from tqdm.auto import trange | |
| def expand_dims(v, dims): | |
| return v[(...,) + (None,) * (dims - 1)] | |
| class FlowMatchUniPC: | |
| def __init__(self, model, extra_args, variant='bh1'): | |
| self.model = model | |
| self.variant = variant | |
| self.extra_args = extra_args | |
| def model_fn(self, x, t): | |
| return self.model(x, t, **self.extra_args) | |
| def update_fn(self, x, model_prev_list, t_prev_list, t, order): | |
| assert order <= len(model_prev_list) | |
| dims = x.dim() | |
| t_prev_0 = t_prev_list[-1] | |
| lambda_prev_0 = - torch.log(t_prev_0) | |
| lambda_t = - torch.log(t) | |
| model_prev_0 = model_prev_list[-1] | |
| h = lambda_t - lambda_prev_0 | |
| rks = [] | |
| D1s = [] | |
| for i in range(1, order): | |
| t_prev_i = t_prev_list[-(i + 1)] | |
| model_prev_i = model_prev_list[-(i + 1)] | |
| lambda_prev_i = - torch.log(t_prev_i) | |
| rk = ((lambda_prev_i - lambda_prev_0) / h)[0] | |
| rks.append(rk) | |
| D1s.append((model_prev_i - model_prev_0) / rk) | |
| rks.append(1.) | |
| rks = torch.tensor(rks, device=x.device) | |
| R = [] | |
| b = [] | |
| hh = -h[0] | |
| h_phi_1 = torch.expm1(hh) | |
| h_phi_k = h_phi_1 / hh - 1 | |
| factorial_i = 1 | |
| if self.variant == 'bh1': | |
| B_h = hh | |
| elif self.variant == 'bh2': | |
| B_h = torch.expm1(hh) | |
| else: | |
| raise NotImplementedError('Bad variant!') | |
| for i in range(1, order + 1): | |
| R.append(torch.pow(rks, i - 1)) | |
| b.append(h_phi_k * factorial_i / B_h) | |
| factorial_i *= (i + 1) | |
| h_phi_k = h_phi_k / hh - 1 / factorial_i | |
| R = torch.stack(R) | |
| b = torch.tensor(b, device=x.device) | |
| use_predictor = len(D1s) > 0 | |
| if use_predictor: | |
| D1s = torch.stack(D1s, dim=1) | |
| if order == 2: | |
| rhos_p = torch.tensor([0.5], device=b.device) | |
| else: | |
| rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) | |
| else: | |
| D1s = None | |
| rhos_p = None | |
| if order == 1: | |
| rhos_c = torch.tensor([0.5], device=b.device) | |
| else: | |
| rhos_c = torch.linalg.solve(R, b) | |
| x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0 | |
| if use_predictor: | |
| pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) | |
| else: | |
| pred_res = 0 | |
| x_t = x_t_ - expand_dims(B_h, dims) * pred_res | |
| model_t = self.model_fn(x_t, t) | |
| if D1s is not None: | |
| corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) | |
| else: | |
| corr_res = 0 | |
| D1_t = (model_t - model_prev_0) | |
| x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t) | |
| return x_t, model_t | |
| def sample(self, x, sigmas, callback=None, disable_pbar=False): | |
| order = min(3, len(sigmas) - 2) | |
| model_prev_list, t_prev_list = [], [] | |
| for i in trange(len(sigmas) - 1, disable=disable_pbar): | |
| vec_t = sigmas[i].expand(x.shape[0]) | |
| if i == 0: | |
| model_prev_list = [self.model_fn(x, vec_t)] | |
| t_prev_list = [vec_t] | |
| elif i < order: | |
| init_order = i | |
| x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order) | |
| model_prev_list.append(model_x) | |
| t_prev_list.append(vec_t) | |
| else: | |
| x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order) | |
| model_prev_list.append(model_x) | |
| t_prev_list.append(vec_t) | |
| model_prev_list = model_prev_list[-order:] | |
| t_prev_list = t_prev_list[-order:] | |
| if callback is not None: | |
| callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]}) | |
| return model_prev_list[-1] | |
| def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'): | |
| assert variant in ['bh1', 'bh2'] | |
| return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable) | |