haileyhalimj@gmail.com
Recover and restore preprocessing improvements from d54de4e
8504f5a
import pandas as pd
import datetime
from datetime import date, timedelta
import json
import os
import yaml
from pathlib import Path
# Load paths configuration
_config_dir = Path(__file__).parent.parent / "config"
_paths_file = _config_dir / "paths.yaml"
with open(_paths_file, 'r', encoding='utf-8') as f:
PATHS = yaml.safe_load(f)
def read_kit_line_match_data() -> pd.DataFrame:
"""Read kit composition and relation data"""
path = PATHS['data']['csv']['kit_composition']
return pd.read_csv(path)
def read_employee_data() -> pd.DataFrame:
"""Read employee workforce hourly pay scale data"""
path = PATHS['data']['csv']['workforce_pay_scale']
return pd.read_csv(path)
def get_shift_info() -> pd.DataFrame:
"""Read work shift information"""
path = PATHS['data']['csv']['work_shift']
df = pd.read_csv(path)
return df
def read_shift_cost_data() -> pd.DataFrame:
"""Read shift cost data from workforce pay scale"""
path = PATHS['data']['csv']['workforce_pay_scale']
return pd.read_csv(path)
def read_work_center_capacity() -> pd.DataFrame:
"""Read work center capacity data"""
path = PATHS['data']['csv']['work_center_capacity']
return pd.read_csv(path)
def read_material_master() -> pd.DataFrame:
"""Read material master WMS data"""
path = PATHS['data']['csv']['material_master']
return pd.read_csv(path)
def read_packaging_line_data() -> pd.DataFrame:
"""Read packaging line data (filtered work center capacity)"""
path = PATHS['data']['csv']['work_center_capacity_processed']
df = pd.read_csv(path)
# Filter for packaging lines only
df = df[df["line_for_packaging"] == True]
return df
def read_orders_data(
start_date=None,
# end_date=None,
) -> pd.DataFrame:
"""
Read COOIS Released Production Orders data
Args:
start_date: start date (pd.Timestamp or datetime)
Returns:
pd.DataFrame: filtered dataframe by date
"""
path = PATHS['data']['csv']['demand']
df = pd.read_csv(path)
assert len(df) > 0, "No data found in the file"
# convert date column to datetime
df["Basic start date"] = pd.to_datetime(df["Basic start date"])
# filter by date
if start_date is not None: # Filter for exact start date only
df = df[df["Basic start date"] == pd.to_datetime(start_date)]
else:
raise ValueError("start_date is required")
return df
def read_package_speed_data():
"""Read package speed data from Kits Calculation"""
path = PATHS['data']['csv']['kits_calculation']
df = pd.read_csv(path, usecols=["Kit", "Kit per day","Paid work hours per day"])
df["Kit per day"] = df["Kit per day"].astype(float)
df["Paid work hours per day"] = df["Paid work hours per day"].astype(float)
df["Kit"] = df["Kit"].astype(str)
df['kits_per_hour'] = df['Kit per day']/df['Paid work hours per day']
speeds_per_hour = dict(zip(df["Kit"], df["kits_per_hour"]))
return speeds_per_hour
def read_personnel_requirement_data():
"""Read personnel requirement data from Kits Calculation"""
path = PATHS['data']['csv']['kits_calculation']
df = pd.read_csv(path, usecols=["Kit", "Humanizer", "UNICEF staff"])
# Clean the data by handling special whitespace characters like \xa0 (non-breaking space)
def clean_and_convert_to_float(value):
if pd.isna(value):
return 0.0
# Convert to string and strip all kinds of whitespace (including \xa0)
clean_value = str(value).strip()
# If empty after stripping, return 0
if clean_value == '' or clean_value == 'nan':
return 0.0
try:
return float(clean_value)
except ValueError as e:
print(f"Warning: Could not convert '{repr(value)}' to float, setting to 0. Error: {e}")
return 0.0
df["Humanizer"] = df["Humanizer"].apply(clean_and_convert_to_float)
df["UNICEF staff"] = df["UNICEF staff"].apply(clean_and_convert_to_float)
df["Kit"] = df["Kit"].astype(str)
return df
def get_production_order_data():
"""
Extract production order information from hierarchy.
Returns:
tuple: (kit_levels, dependencies, priority_order)
- kit_levels: {kit_id: level} where level 0=prepack, 1=subkit, 2=master
- dependencies: {kit_id: [dependency_list]}
- priority_order: [kit_ids] sorted by production priority
"""
path = PATHS['data']['hierarchy']['kit_hierarchy']
with open(path, 'r', encoding='utf-8') as f:
hierarchy = json.load(f)
kit_levels = {}
dependencies = {}
# Process hierarchy to extract levels and dependencies
for master_id, master_data in hierarchy.items():
# Master kits are level 2
kit_levels[master_id] = 2
dependencies[master_id] = master_data.get('dependencies', [])
# Process subkits (level 1)
for subkit_id, subkit_data in master_data.get('subkits', {}).items():
kit_levels[subkit_id] = 1
dependencies[subkit_id] = subkit_data.get('dependencies', [])
# Process prepacks under subkits (level 0)
for prepack_id in subkit_data.get('prepacks', []):
if prepack_id not in kit_levels: # Avoid overwriting if already exists
kit_levels[prepack_id] = 0
dependencies[prepack_id] = []
# Process direct prepacks under master (level 0)
for prepack_id in master_data.get('direct_prepacks', []):
if prepack_id not in kit_levels: # Avoid overwriting if already exists
kit_levels[prepack_id] = 0
dependencies[prepack_id] = []
# Create priority order: prepacks first, then subkits, then masters
priority_order = []
# Level 0: Prepacks (highest priority)
prepacks = [kit for kit, level in kit_levels.items() if level == 0]
priority_order.extend(sorted(prepacks))
# Level 1: Subkits (medium priority)
subkits = [kit for kit, level in kit_levels.items() if level == 1]
priority_order.extend(sorted(subkits))
# Level 2: Masters (lowest priority)
masters = [kit for kit, level in kit_levels.items() if level == 2]
priority_order.extend(sorted(masters))
return kit_levels, dependencies, priority_order
if __name__ == "__main__":
employee_data = read_employee_data()
print("employee data")
print(employee_data)
print("line speed data",read_package_speed_data())