demo_language_moore / src /language_id.py
khof312's picture
Time execution and fix small bug in STT.
a84c313
import time
import librosa
import torch
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
from transformers import set_seed
def identify_language(fp:str) -> str:
'''
For given audio file, identify what language it uses.
Parameters
----------
fp: str
The file path to the audio file.
Returns
----------
detected_lang:str
The iso3 code of the detected language.
'''
# Ensure replicability
set_seed(555)
start_time = time.time()
# Load language ID model
model_id = "facebook/mms-lid-256" # Need to find the appropriate model for the language -- 256 languages is the first that contains MOS
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
# Process the audio
signal, sampling_rate = librosa.load(fp, sr=16000)
inputs = processor(signal, sampling_rate=16_000, return_tensors="pt")
# Inference
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
print("Time elapsed: ", int(time.time() - start_time), " seconds")
return detected_lang