Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import torch | |
from fairseq import utils | |
class TestUtils(unittest.TestCase): | |
def test_convert_padding_direction(self): | |
pad = 1 | |
left_pad = torch.LongTensor( | |
[ | |
[2, 3, 4, 5, 6], | |
[1, 7, 8, 9, 10], | |
[1, 1, 1, 11, 12], | |
] | |
) | |
right_pad = torch.LongTensor( | |
[ | |
[2, 3, 4, 5, 6], | |
[7, 8, 9, 10, 1], | |
[11, 12, 1, 1, 1], | |
] | |
) | |
self.assertAlmostEqual( | |
right_pad, | |
utils.convert_padding_direction( | |
left_pad, | |
pad, | |
left_to_right=True, | |
), | |
) | |
self.assertAlmostEqual( | |
left_pad, | |
utils.convert_padding_direction( | |
right_pad, | |
pad, | |
right_to_left=True, | |
), | |
) | |
def test_make_positions(self): | |
pad = 1 | |
left_pad_input = torch.LongTensor( | |
[ | |
[9, 9, 9, 9, 9], | |
[1, 9, 9, 9, 9], | |
[1, 1, 1, 9, 9], | |
] | |
) | |
left_pad_output = torch.LongTensor( | |
[ | |
[2, 3, 4, 5, 6], | |
[1, 2, 3, 4, 5], | |
[1, 1, 1, 2, 3], | |
] | |
) | |
right_pad_input = torch.LongTensor( | |
[ | |
[9, 9, 9, 9, 9], | |
[9, 9, 9, 9, 1], | |
[9, 9, 1, 1, 1], | |
] | |
) | |
right_pad_output = torch.LongTensor( | |
[ | |
[2, 3, 4, 5, 6], | |
[2, 3, 4, 5, 1], | |
[2, 3, 1, 1, 1], | |
] | |
) | |
self.assertAlmostEqual( | |
left_pad_output, | |
utils.make_positions(left_pad_input, pad), | |
) | |
self.assertAlmostEqual( | |
right_pad_output, | |
utils.make_positions(right_pad_input, pad), | |
) | |
def test_clip_grad_norm_(self): | |
params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False) | |
grad_norm = utils.clip_grad_norm_(params, 1.0) | |
self.assertTrue(torch.is_tensor(grad_norm)) | |
self.assertEqual(grad_norm, 0.0) | |
params = [torch.nn.Parameter(torch.zeros(5)) for i in range(3)] | |
for p in params: | |
p.grad = torch.full((5,), fill_value=2.0) | |
grad_norm = utils.clip_grad_norm_(params, 1.0) | |
exp_grad_norm = torch.full((15,), fill_value=2.0).norm() | |
self.assertTrue(torch.is_tensor(grad_norm)) | |
self.assertEqual(grad_norm, exp_grad_norm) | |
grad_norm = utils.clip_grad_norm_(params, 1.0) | |
self.assertAlmostEqual(grad_norm, torch.tensor(1.0)) | |
def test_resolve_max_positions_with_tuple(self): | |
resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000) | |
self.assertEqual(resolved, (2000, 100, 2000)) | |
def assertAlmostEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) | |
if __name__ == "__main__": | |
unittest.main() | |