Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import unittest | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from fairseq.models.transformer import TransformerModel | |
from tests.test_sequence_generator import get_dummy_task_and_parser | |
class TestInferenceDropout(unittest.TestCase): | |
def setUp(self): | |
self.task, self.parser = get_dummy_task_and_parser() | |
TransformerModel.add_args(self.parser) | |
self.args = self.parser.parse_args([]) | |
self.args.encoder_layers = 2 | |
self.args.decoder_layers = 1 | |
logging.disable(logging.CRITICAL) | |
def tearDown(self): | |
logging.disable(logging.NOTSET) | |
def test_sets_inference_dropout_to_true(self): | |
self.args.retain_dropout = True | |
self.transformer_model = TransformerModel.build_model(self.args, self.task) | |
cfg = convert_namespace_to_omegaconf(self.args) | |
self.transformer_model.prepare_for_inference_(cfg) | |
assert self.transformer_model.encoder.dropout_module.apply_during_inference | |
assert self.transformer_model.decoder.dropout_module.apply_during_inference | |
for layer in self.transformer_model.encoder.layers: | |
assert layer.dropout_module.apply_during_inference | |
def test_inference_dropout_false_by_default(self): | |
self.transformer_model = TransformerModel.build_model(self.args, self.task) | |
cfg = convert_namespace_to_omegaconf(self.args) | |
self.transformer_model.prepare_for_inference_(cfg) | |
assert not self.transformer_model.encoder.dropout_module.apply_during_inference | |
assert not self.transformer_model.decoder.dropout_module.apply_during_inference | |
for layer in self.transformer_model.encoder.layers: | |
assert not layer.dropout_module.apply_during_inference | |
for layer in self.transformer_model.decoder.layers: | |
assert not layer.dropout_module.apply_during_inference | |
def test_applies_training_mode(self): | |
self.transformer_model = TransformerModel.build_model(self.args, self.task) | |
assert self.transformer_model.encoder.dropout_module.training | |
for layer in self.transformer_model.encoder.layers: | |
assert layer.dropout_module.training | |
self.transformer_model.eval() | |
assert not self.transformer_model.decoder.dropout_module.training | |
for layer in self.transformer_model.encoder.layers: | |
assert not layer.dropout_module.training | |
def test_retain_modules(self): | |
self.args.retain_dropout = True | |
self.args.retain_dropout_modules = [ | |
"TransformerEncoder", | |
"TransformerEncoderLayer", | |
] | |
self.transformer_model = TransformerModel.build_model(self.args, self.task) | |
cfg = convert_namespace_to_omegaconf(self.args) | |
self.transformer_model.prepare_for_inference_(cfg) | |
assert self.transformer_model.encoder.dropout_module.apply_during_inference | |
assert not self.transformer_model.decoder.dropout_module.apply_during_inference | |
for layer in self.transformer_model.decoder.layers: | |
assert not layer.dropout_module.apply_during_inference | |