JustinLin610
update
10b0761
#!/usr/bin/env python3
import argparse
import os
import unittest
from inspect import currentframe, getframeinfo
import numpy as np
import torch
from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask
from fairseq.data import data_utils as fairseq_data_utils
from fairseq.data.dictionary import Dictionary
from fairseq.models import (
BaseFairseqModel,
FairseqDecoder,
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqEncoderModel,
FairseqModel,
)
from fairseq.tasks.fairseq_task import LegacyFairseqTask
DEFAULT_TEST_VOCAB_SIZE = 100
# ///////////////////////////////////////////////////////////////////////////
# utility function to setup dummy dict/task/input
# ///////////////////////////////////////////////////////////////////////////
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
dummy_dict = Dictionary()
# add dummy symbol to satisfy vocab size
for id, _ in enumerate(range(vocab_size)):
dummy_dict.add_symbol("{}".format(id), 1000)
return dummy_dict
class DummyTask(LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = get_dummy_dictionary()
if getattr(self.args, "ctc", False):
self.dictionary.add_symbol("<ctc_blank>")
self.tgt_dict = self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def get_dummy_task_and_parser():
"""
to build a fariseq model, we need some dummy parse and task. This function
is used to create dummy task and parser to faciliate model/criterion test
Note: we use FbSpeechRecognitionTask as the dummy task. You may want
to use other task by providing another function
"""
parser = argparse.ArgumentParser(
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
)
DummyTask.add_args(parser)
args = parser.parse_args([])
task = DummyTask.setup_task(args)
return task, parser
def get_dummy_input(T=100, D=80, B=5, K=100):
forward_input = {}
# T max sequence length
# D feature vector dimension
# B batch size
# K target dimension size
feature = torch.randn(B, T, D)
# this (B, T, D) layout is just a convention, you can override it by
# write your own _prepare_forward_input function
src_lengths = torch.from_numpy(
np.random.randint(low=1, high=T, size=B, dtype=np.int64)
)
src_lengths[0] = T # make sure the maximum length matches
prev_output_tokens = []
for b in range(B):
token_length = np.random.randint(low=1, high=src_lengths[b].item() + 1)
tokens = np.random.randint(low=0, high=K, size=token_length, dtype=np.int64)
prev_output_tokens.append(torch.from_numpy(tokens))
prev_output_tokens = fairseq_data_utils.collate_tokens(
prev_output_tokens,
pad_idx=1,
eos_idx=2,
left_pad=False,
move_eos_to_beginning=False,
)
src_lengths, sorted_order = src_lengths.sort(descending=True)
forward_input["src_tokens"] = feature.index_select(0, sorted_order)
forward_input["src_lengths"] = src_lengths
forward_input["prev_output_tokens"] = prev_output_tokens
return forward_input
def get_dummy_encoder_output(encoder_out_shape=(100, 80, 5)):
"""
This only provides an example to generate dummy encoder output
"""
(T, B, D) = encoder_out_shape
encoder_out = {}
encoder_out["encoder_out"] = torch.from_numpy(
np.random.randn(*encoder_out_shape).astype(np.float32)
)
seq_lengths = torch.from_numpy(np.random.randint(low=1, high=T, size=B))
# some dummy mask
encoder_out["encoder_padding_mask"] = torch.arange(T).view(1, T).expand(
B, -1
) >= seq_lengths.view(B, 1).expand(-1, T)
encoder_out["encoder_padding_mask"].t_()
# encoer_padding_mask is (T, B) tensor, with (t, b)-th element indicate
# whether encoder_out[t, b] is valid (=0) or not (=1)
return encoder_out
def _current_postion_info():
cf = currentframe()
frameinfo = " (at {}:{})".format(
os.path.basename(getframeinfo(cf).filename), cf.f_back.f_lineno
)
return frameinfo
def check_encoder_output(encoder_output, batch_size=None):
"""we expect encoder_output to be a dict with the following
key/value pairs:
- encoder_out: a Torch.Tensor
- encoder_padding_mask: a binary Torch.Tensor
"""
if not isinstance(encoder_output, dict):
msg = (
"FairseqEncoderModel.forward(...) must be a dict" + _current_postion_info()
)
return False, msg
if "encoder_out" not in encoder_output:
msg = (
"FairseqEncoderModel.forward(...) must contain encoder_out"
+ _current_postion_info()
)
return False, msg
if "encoder_padding_mask" not in encoder_output:
msg = (
"FairseqEncoderModel.forward(...) must contain encoder_padding_mask"
+ _current_postion_info()
)
return False, msg
if not isinstance(encoder_output["encoder_out"], torch.Tensor):
msg = "encoder_out must be a torch.Tensor" + _current_postion_info()
return False, msg
if encoder_output["encoder_out"].dtype != torch.float32:
msg = "encoder_out must have float32 dtype" + _current_postion_info()
return False, msg
mask = encoder_output["encoder_padding_mask"]
if mask is not None:
if not isinstance(mask, torch.Tensor):
msg = (
"encoder_padding_mask must be a torch.Tensor" + _current_postion_info()
)
return False, msg
if mask.dtype != torch.uint8 and (
not hasattr(torch, "bool") or mask.dtype != torch.bool
):
msg = (
"encoder_padding_mask must have dtype of uint8"
+ _current_postion_info()
)
return False, msg
if mask.dim() != 2:
msg = (
"we expect encoder_padding_mask to be a 2-d tensor, in shape (T, B)"
+ _current_postion_info()
)
return False, msg
if batch_size is not None and mask.size(1) != batch_size:
msg = (
"we expect encoder_padding_mask to be a 2-d tensor, with size(1)"
+ " being the batch size"
+ _current_postion_info()
)
return False, msg
return True, None
def check_decoder_output(decoder_output):
"""we expect output from a decoder is a tuple with the following constraint:
- the first element is a torch.Tensor
- the second element can be anything (reserved for future use)
"""
if not isinstance(decoder_output, tuple):
msg = "FariseqDecoder output must be a tuple" + _current_postion_info()
return False, msg
if len(decoder_output) != 2:
msg = "FairseqDecoder output must be 2-elem tuple" + _current_postion_info()
return False, msg
if not isinstance(decoder_output[0], torch.Tensor):
msg = (
"FariseqDecoder output[0] must be a torch.Tensor" + _current_postion_info()
)
return False, msg
return True, None
# ///////////////////////////////////////////////////////////////////////////
# Base Test class
# ///////////////////////////////////////////////////////////////////////////
class TestBaseFairseqModelBase(unittest.TestCase):
"""
This class is used to facilitate writing unittest for any class derived from
`BaseFairseqModel`.
"""
@classmethod
def setUpClass(cls):
if cls is TestBaseFairseqModelBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpModel(self, model):
self.assertTrue(isinstance(model, BaseFairseqModel))
self.model = model
def setupInput(self):
pass
def setUp(self):
self.model = None
self.forward_input = None
pass
class TestFairseqEncoderDecoderModelBase(TestBaseFairseqModelBase):
"""
base code to test FairseqEncoderDecoderModel (formally known as
`FairseqModel`) must be derived from this base class
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqEncoderDecoderModelBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpModel(self, model_cls, extra_args_setters=None):
self.assertTrue(
issubclass(model_cls, (FairseqEncoderDecoderModel, FairseqModel)),
msg="This class only tests for FairseqModel subclasses",
)
task, parser = get_dummy_task_and_parser()
model_cls.add_args(parser)
args = parser.parse_args([])
if extra_args_setters is not None:
for args_setter in extra_args_setters:
args_setter(args)
model = model_cls.build_model(args, task)
self.model = model
def setUpInput(self, input=None):
self.forward_input = get_dummy_input() if input is None else input
def setUp(self):
super().setUp()
def test_forward(self):
if self.model and self.forward_input:
forward_output = self.model.forward(**self.forward_input)
# for FairseqEncoderDecoderModel, forward returns a tuple of two
# elements, the first one is a Torch.Tensor
succ, msg = check_decoder_output(forward_output)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_output = forward_output
def test_get_normalized_probs(self):
if self.model and self.forward_input:
forward_output = self.model.forward(**self.forward_input)
logprob = self.model.get_normalized_probs(forward_output, log_probs=True)
prob = self.model.get_normalized_probs(forward_output, log_probs=False)
# in order for different models/criterion to play with each other
# we need to know whether the logprob or prob output is batch_first
# or not. We assume an additional attribute will be attached to logprob
# or prob. If you find your code failed here, simply override
# FairseqModel.get_normalized_probs, see example at
# https://fburl.com/batch_first_example
self.assertTrue(hasattr(logprob, "batch_first"))
self.assertTrue(hasattr(prob, "batch_first"))
self.assertTrue(torch.is_tensor(logprob))
self.assertTrue(torch.is_tensor(prob))
class TestFairseqEncoderModelBase(TestBaseFairseqModelBase):
"""
base class to test FairseqEncoderModel
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqEncoderModelBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpModel(self, model_cls, extra_args_setters=None):
self.assertTrue(
issubclass(model_cls, FairseqEncoderModel),
msg="This class is only used for testing FairseqEncoderModel",
)
task, parser = get_dummy_task_and_parser()
model_cls.add_args(parser)
args = parser.parse_args([])
if extra_args_setters is not None:
for args_setter in extra_args_setters:
args_setter(args)
model = model_cls.build_model(args, task)
self.model = model
def setUpInput(self, input=None):
self.forward_input = get_dummy_input() if input is None else input
# get_dummy_input() is originally for s2s, here we delete extra dict
# items, so it can be used for EncoderModel / Encoder as well
self.forward_input.pop("prev_output_tokens", None)
def setUp(self):
super().setUp()
def test_forward(self):
if self.forward_input and self.model:
bsz = self.forward_input["src_tokens"].size(0)
forward_output = self.model.forward(**self.forward_input)
# we expect forward_output to be a dict with the following
# key/value pairs:
# - encoder_out: a Torch.Tensor
# - encoder_padding_mask: a binary Torch.Tensor
succ, msg = check_encoder_output(forward_output, batch_size=bsz)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_output = forward_output
def test_get_normalized_probs(self):
if self.model and self.forward_input:
forward_output = self.model.forward(**self.forward_input)
logprob = self.model.get_normalized_probs(forward_output, log_probs=True)
prob = self.model.get_normalized_probs(forward_output, log_probs=False)
# in order for different models/criterion to play with each other
# we need to know whether the logprob or prob output is batch_first
# or not. We assume an additional attribute will be attached to logprob
# or prob. If you find your code failed here, simply override
# FairseqModel.get_normalized_probs, see example at
# https://fburl.com/batch_first_example
self.assertTrue(hasattr(logprob, "batch_first"))
self.assertTrue(hasattr(prob, "batch_first"))
self.assertTrue(torch.is_tensor(logprob))
self.assertTrue(torch.is_tensor(prob))
class TestFairseqEncoderBase(unittest.TestCase):
"""
base class to test FairseqEncoder
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqEncoderBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpEncoder(self, encoder):
self.assertTrue(
isinstance(encoder, FairseqEncoder),
msg="This class is only used for test FairseqEncoder",
)
self.encoder = encoder
def setUpInput(self, input=None):
self.forward_input = get_dummy_input() if input is None else input
# get_dummy_input() is originally for s2s, here we delete extra dict
# items, so it can be used for EncoderModel / Encoder as well
self.forward_input.pop("prev_output_tokens", None)
def setUp(self):
self.encoder = None
self.forward_input = None
def test_forward(self):
if self.encoder and self.forward_input:
bsz = self.forward_input["src_tokens"].size(0)
forward_output = self.encoder.forward(**self.forward_input)
succ, msg = check_encoder_output(forward_output, batch_size=bsz)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_output = forward_output
class TestFairseqDecoderBase(unittest.TestCase):
"""
base class to test FairseqDecoder
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqDecoderBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpDecoder(self, decoder):
self.assertTrue(
isinstance(decoder, FairseqDecoder),
msg="This class is only used for test FairseqDecoder",
)
self.decoder = decoder
def setUpInput(self, input=None):
self.forward_input = get_dummy_encoder_output() if input is None else input
def setUpPrevOutputTokens(self, tokens=None):
if tokens is None:
self.encoder_input = get_dummy_input()
self.prev_output_tokens = self.encoder_input["prev_output_tokens"]
else:
self.prev_output_tokens = tokens
def setUp(self):
self.decoder = None
self.forward_input = None
self.prev_output_tokens = None
def test_forward(self):
if (
self.decoder is not None
and self.forward_input is not None
and self.prev_output_tokens is not None
):
forward_output = self.decoder.forward(
prev_output_tokens=self.prev_output_tokens,
encoder_out=self.forward_input,
)
succ, msg = check_decoder_output(forward_output)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_input = forward_output
class DummyEncoderModel(FairseqEncoderModel):
def __init__(self, encoder):
super().__init__(encoder)
@classmethod
def build_model(cls, args, task):
return cls(DummyEncoder())
def get_logits(self, net_output):
# Inverse of sigmoid to use with BinaryCrossEntropyWithLogitsCriterion as
# F.binary_cross_entropy_with_logits combines sigmoid and CE
return torch.log(
torch.div(net_output["encoder_out"], 1 - net_output["encoder_out"])
)
def get_normalized_probs(self, net_output, log_probs, sample=None):
lprobs = super().get_normalized_probs(net_output, log_probs, sample=sample)
lprobs.batch_first = True
return lprobs
class DummyEncoder(FairseqEncoder):
def __init__(self):
super().__init__(None)
def forward(self, src_tokens, src_lengths):
mask, max_len = lengths_to_encoder_padding_mask(src_lengths)
return {"encoder_out": src_tokens, "encoder_padding_mask": mask}
class CrossEntropyCriterionTestBase(unittest.TestCase):
@classmethod
def setUpClass(cls):
if cls is CrossEntropyCriterionTestBase:
raise unittest.SkipTest("Skipping base class test case")
super().setUpClass()
def setUpArgs(self):
args = argparse.Namespace()
args.sentence_avg = False
args.threshold = 0.1 # to use with BinaryCrossEntropyWithLogitsCriterion
return args
def setUp(self):
args = self.setUpArgs()
self.model = DummyEncoderModel(encoder=DummyEncoder())
self.criterion = self.criterion_cls.build_criterion(args, task=DummyTask(args))
def get_src_tokens(self, correct_prediction, aggregate):
"""
correct_prediction: True if the net_output (src_tokens) should
predict the correct target
aggregate: True if the criterion expects net_output (src_tokens)
aggregated across time axis
"""
predicted_idx = 0 if correct_prediction else 1
if aggregate:
src_tokens = torch.zeros((2, 2), dtype=torch.float)
for b in range(2):
src_tokens[b][predicted_idx] = 1.0
else:
src_tokens = torch.zeros((2, 10, 2), dtype=torch.float)
for b in range(2):
for t in range(10):
src_tokens[b][t][predicted_idx] = 1.0
return src_tokens
def get_target(self, soft_target):
if soft_target:
target = torch.zeros((2, 2), dtype=torch.float)
for b in range(2):
target[b][0] = 1.0
else:
target = torch.zeros((2, 10), dtype=torch.long)
return target
def get_test_sample(self, correct, soft_target, aggregate):
src_tokens = self.get_src_tokens(correct, aggregate)
target = self.get_target(soft_target)
L = src_tokens.size(1)
return {
"net_input": {"src_tokens": src_tokens, "src_lengths": torch.tensor([L])},
"target": target,
"ntokens": src_tokens.size(0) * src_tokens.size(1),
}