Spaces:
Runtime error
Runtime error
-- Copyright (c) Facebook, Inc. and its affiliates. | |
-- | |
-- This source code is licensed under the MIT license found in the | |
-- LICENSE file in the root directory of this source tree. | |
-- | |
-- Usage: convert_model.lua <model_epoch1.th7> | |
require 'torch' | |
local fairseq = require 'fairseq' | |
model = torch.load(arg[1]) | |
function find_weight_norm(container, module) | |
for _, wn in ipairs(container:listModules()) do | |
if torch.type(wn) == 'nn.WeightNorm' and wn.modules[1] == module then | |
return wn | |
end | |
end | |
end | |
function push_state(dict, key, module) | |
if torch.type(module) == 'nn.Linear' then | |
local wn = find_weight_norm(model.module, module) | |
assert(wn) | |
dict[key .. '.weight_v'] = wn.v:float() | |
dict[key .. '.weight_g'] = wn.g:float() | |
elseif torch.type(module) == 'nn.TemporalConvolutionTBC' then | |
local wn = find_weight_norm(model.module, module) | |
assert(wn) | |
local v = wn.v:float():view(wn.viewOut):transpose(2, 3) | |
dict[key .. '.weight_v'] = v | |
dict[key .. '.weight_g'] = wn.g:float():view(module.weight:size(3), 1, 1) | |
else | |
dict[key .. '.weight'] = module.weight:float() | |
end | |
if module.bias then | |
dict[key .. '.bias'] = module.bias:float() | |
end | |
end | |
encoder_dict = {} | |
decoder_dict = {} | |
combined_dict = {} | |
function encoder_state(encoder) | |
luts = encoder:findModules('nn.LookupTable') | |
push_state(encoder_dict, 'embed_tokens', luts[1]) | |
push_state(encoder_dict, 'embed_positions', luts[2]) | |
fcs = encoder:findModules('nn.Linear') | |
assert(#fcs >= 2) | |
local nInputPlane = fcs[1].weight:size(1) | |
push_state(encoder_dict, 'fc1', table.remove(fcs, 1)) | |
push_state(encoder_dict, 'fc2', table.remove(fcs, #fcs)) | |
for i, module in ipairs(encoder:findModules('nn.TemporalConvolutionTBC')) do | |
push_state(encoder_dict, 'convolutions.' .. tostring(i - 1), module) | |
if nInputPlane ~= module.weight:size(3) / 2 then | |
push_state(encoder_dict, 'projections.' .. tostring(i - 1), table.remove(fcs, 1)) | |
end | |
nInputPlane = module.weight:size(3) / 2 | |
end | |
assert(#fcs == 0) | |
end | |
function decoder_state(decoder) | |
luts = decoder:findModules('nn.LookupTable') | |
push_state(decoder_dict, 'embed_tokens', luts[1]) | |
push_state(decoder_dict, 'embed_positions', luts[2]) | |
fcs = decoder:findModules('nn.Linear') | |
local nInputPlane = fcs[1].weight:size(1) | |
push_state(decoder_dict, 'fc1', table.remove(fcs, 1)) | |
push_state(decoder_dict, 'fc2', fcs[#fcs - 1]) | |
push_state(decoder_dict, 'fc3', fcs[#fcs]) | |
table.remove(fcs, #fcs) | |
table.remove(fcs, #fcs) | |
for i, module in ipairs(decoder:findModules('nn.TemporalConvolutionTBC')) do | |
if nInputPlane ~= module.weight:size(3) / 2 then | |
push_state(decoder_dict, 'projections.' .. tostring(i - 1), table.remove(fcs, 1)) | |
end | |
nInputPlane = module.weight:size(3) / 2 | |
local prefix = 'attention.' .. tostring(i - 1) | |
push_state(decoder_dict, prefix .. '.in_projection', table.remove(fcs, 1)) | |
push_state(decoder_dict, prefix .. '.out_projection', table.remove(fcs, 1)) | |
push_state(decoder_dict, 'convolutions.' .. tostring(i - 1), module) | |
end | |
assert(#fcs == 0) | |
end | |
_encoder = model.module.modules[2] | |
_decoder = model.module.modules[3] | |
encoder_state(_encoder) | |
decoder_state(_decoder) | |
for k, v in pairs(encoder_dict) do | |
combined_dict['encoder.' .. k] = v | |
end | |
for k, v in pairs(decoder_dict) do | |
combined_dict['decoder.' .. k] = v | |
end | |
torch.save('state_dict.t7', combined_dict) | |