Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import tempfile | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.data import ( | |
Dictionary, | |
IdDataset, | |
ListDataset, | |
NestedDictionaryDataset, | |
NumelDataset, | |
NumSamplesDataset, | |
PadDataset, | |
SortDataset, | |
data_utils, | |
encoders, | |
) | |
from fairseq.tasks import LegacyFairseqTask, register_task | |
from . import wsc_utils | |
class WSCTask(LegacyFairseqTask): | |
"""Task to finetune RoBERTa for Winograd Schemas.""" | |
def add_args(parser): | |
"""Add task-specific arguments to the parser.""" | |
parser.add_argument( | |
"data", metavar="DIR", help="path to data directory; we load <split>.jsonl" | |
) | |
parser.add_argument( | |
"--init-token", | |
type=int, | |
default=None, | |
help="add token at the beginning of each batch item", | |
) | |
def __init__(self, args, vocab): | |
super().__init__(args) | |
self.vocab = vocab | |
self.mask = vocab.add_symbol("<mask>") | |
self.bpe = encoders.build_bpe(args) | |
self.tokenizer = encoders.build_tokenizer(args) | |
# hack to handle GPT-2 BPE, which includes leading spaces | |
if args.bpe == "gpt2": | |
self.leading_space = True | |
self.trailing_space = False | |
else: | |
self.leading_space = False | |
self.trailing_space = True | |
def load_dictionary(cls, filename): | |
"""Load the dictionary from the filename | |
Args: | |
filename (str): the filename | |
""" | |
dictionary = Dictionary.load(filename) | |
dictionary.add_symbol("<mask>") | |
return dictionary | |
def setup_task(cls, args, **kwargs): | |
assert args.criterion == "wsc", "Must set --criterion=wsc" | |
# load data and label dictionaries | |
vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) | |
print("| dictionary: {} types".format(len(vocab))) | |
return cls(args, vocab) | |
def binarize(self, s: str, append_eos: bool = False): | |
if self.tokenizer is not None: | |
s = self.tokenizer.encode(s) | |
if self.bpe is not None: | |
s = self.bpe.encode(s) | |
tokens = self.vocab.encode_line( | |
s, | |
append_eos=append_eos, | |
add_if_not_exist=False, | |
).long() | |
if self.args.init_token is not None: | |
tokens = torch.cat([tokens.new([self.args.init_token]), tokens]) | |
return tokens | |
def binarize_with_mask(self, txt, prefix, suffix, leading_space, trailing_space): | |
toks = self.binarize( | |
prefix + leading_space + txt + trailing_space + suffix, | |
append_eos=True, | |
) | |
mask = torch.zeros_like(toks, dtype=torch.bool) | |
mask_start = len(self.binarize(prefix)) | |
mask_size = len(self.binarize(leading_space + txt)) | |
mask[mask_start : mask_start + mask_size] = 1 | |
return toks, mask | |
def load_dataset( | |
self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs | |
): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
if data_path is None: | |
data_path = os.path.join(self.args.data, split + ".jsonl") | |
if not os.path.exists(data_path): | |
raise FileNotFoundError("Cannot find data: {}".format(data_path)) | |
query_tokens = [] | |
query_masks = [] | |
query_lengths = [] | |
candidate_tokens = [] | |
candidate_masks = [] | |
candidate_lengths = [] | |
labels = [] | |
for sentence, pronoun_span, query, label in wsc_utils.jsonl_iterator(data_path): | |
prefix = sentence[: pronoun_span.start].text | |
suffix = sentence[pronoun_span.end :].text_with_ws | |
# spaCy spans include trailing spaces, but we need to know about | |
# leading spaces for the GPT-2 BPE | |
leading_space = ( | |
" " if sentence[: pronoun_span.start].text_with_ws.endswith(" ") else "" | |
) | |
trailing_space = " " if pronoun_span.text_with_ws.endswith(" ") else "" | |
# get noun phrases, excluding pronouns and anything overlapping with the query | |
cand_spans = wsc_utils.filter_noun_chunks( | |
wsc_utils.extended_noun_chunks(sentence), | |
exclude_pronouns=True, | |
exclude_query=query, | |
exact_match=False, | |
) | |
if query is not None: | |
query_toks, query_mask = self.binarize_with_mask( | |
query, prefix, suffix, leading_space, trailing_space | |
) | |
query_len = len(query_toks) | |
else: | |
query_toks, query_mask, query_len = None, None, 0 | |
query_tokens.append(query_toks) | |
query_masks.append(query_mask) | |
query_lengths.append(query_len) | |
cand_toks, cand_masks = [], [] | |
for cand_span in cand_spans: | |
toks, mask = self.binarize_with_mask( | |
cand_span.text, | |
prefix, | |
suffix, | |
leading_space, | |
trailing_space, | |
) | |
cand_toks.append(toks) | |
cand_masks.append(mask) | |
# collate candidates | |
cand_toks = data_utils.collate_tokens(cand_toks, pad_idx=self.vocab.pad()) | |
cand_masks = data_utils.collate_tokens(cand_masks, pad_idx=0) | |
assert cand_toks.size() == cand_masks.size() | |
candidate_tokens.append(cand_toks) | |
candidate_masks.append(cand_masks) | |
candidate_lengths.append(cand_toks.size(1)) | |
labels.append(label) | |
query_lengths = np.array(query_lengths) | |
query_tokens = ListDataset(query_tokens, query_lengths) | |
query_masks = ListDataset(query_masks, query_lengths) | |
candidate_lengths = np.array(candidate_lengths) | |
candidate_tokens = ListDataset(candidate_tokens, candidate_lengths) | |
candidate_masks = ListDataset(candidate_masks, candidate_lengths) | |
labels = ListDataset(labels, [1] * len(labels)) | |
dataset = { | |
"id": IdDataset(), | |
"query_tokens": query_tokens, | |
"query_masks": query_masks, | |
"candidate_tokens": candidate_tokens, | |
"candidate_masks": candidate_masks, | |
"labels": labels, | |
"nsentences": NumSamplesDataset(), | |
"ntokens": NumelDataset(query_tokens, reduce=True), | |
} | |
nested_dataset = NestedDictionaryDataset( | |
dataset, | |
sizes=[query_lengths], | |
) | |
with data_utils.numpy_seed(self.args.seed): | |
shuffle = np.random.permutation(len(query_tokens)) | |
dataset = SortDataset( | |
nested_dataset, | |
# shuffle | |
sort_order=[shuffle], | |
) | |
if return_only: | |
return dataset | |
self.datasets[split] = dataset | |
return self.datasets[split] | |
def build_dataset_for_inference(self, sample_json): | |
with tempfile.NamedTemporaryFile(buffering=0) as h: | |
h.write((json.dumps(sample_json) + "\n").encode("utf-8")) | |
dataset = self.load_dataset( | |
"disambiguate_pronoun", | |
data_path=h.name, | |
return_only=True, | |
) | |
return dataset | |
def disambiguate_pronoun(self, model, sentence, use_cuda=False): | |
sample_json = wsc_utils.convert_sentence_to_json(sentence) | |
dataset = self.build_dataset_for_inference(sample_json) | |
sample = dataset.collater([dataset[0]]) | |
if use_cuda: | |
sample = utils.move_to_cuda(sample) | |
def get_masked_input(tokens, mask): | |
masked_tokens = tokens.clone() | |
masked_tokens[mask.bool()] = self.mask | |
return masked_tokens | |
def get_lprobs(tokens, mask): | |
logits, _ = model(src_tokens=get_masked_input(tokens, mask)) | |
lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) | |
scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) | |
mask = mask.type_as(scores) | |
scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) | |
return scores | |
cand_lprobs = get_lprobs( | |
sample["candidate_tokens"][0], | |
sample["candidate_masks"][0], | |
) | |
if sample["query_tokens"][0] is not None: | |
query_lprobs = get_lprobs( | |
sample["query_tokens"][0].unsqueeze(0), | |
sample["query_masks"][0].unsqueeze(0), | |
) | |
return (query_lprobs >= cand_lprobs).all().item() == 1 | |
else: | |
best_idx = cand_lprobs.argmax().item() | |
full_cand = sample["candidate_tokens"][0][best_idx] | |
mask = sample["candidate_masks"][0][best_idx] | |
toks = full_cand[mask.bool()] | |
return self.bpe.decode(self.source_dictionary.string(toks)).strip() | |
def source_dictionary(self): | |
return self.vocab | |
def target_dictionary(self): | |
return self.vocab | |
class WinograndeTask(WSCTask): | |
""" | |
Task for WinoGrande dataset. Efficient implementation for Winograd schema | |
tasks with exactly two candidates, one of which is correct. | |
""" | |
def setup_task(cls, args, **kwargs): | |
assert args.criterion == "winogrande", "Must set --criterion=winogrande" | |
# load data and label dictionaries | |
vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) | |
print("| dictionary: {} types".format(len(vocab))) | |
return cls(args, vocab) | |
def load_dataset( | |
self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs | |
): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
if data_path is None: | |
data_path = os.path.join(self.args.data, split + ".jsonl") | |
if not os.path.exists(data_path): | |
raise FileNotFoundError("Cannot find data: {}".format(data_path)) | |
query_tokens = [] | |
query_masks = [] | |
query_lengths = [] | |
candidate_tokens = [] | |
candidate_masks = [] | |
candidate_lengths = [] | |
itr = wsc_utils.winogrande_jsonl_iterator(data_path, eval=(split == "test")) | |
for sample in itr: | |
sentence, pronoun_span, query, cand_text = sample | |
prefix = sentence[: pronoun_span[0]].rstrip() | |
suffix = sentence[pronoun_span[1] :] | |
leading_space = " " if sentence[: pronoun_span[0]].endswith(" ") else "" | |
trailing_space = "" | |
if query is not None: | |
query_toks, query_mask = self.binarize_with_mask( | |
query, | |
prefix, | |
suffix, | |
leading_space, | |
trailing_space, | |
) | |
query_len = len(query_toks) | |
else: | |
query_toks, query_mask, query_len = None, None, 0 | |
query_tokens.append(query_toks) | |
query_masks.append(query_mask) | |
query_lengths.append(query_len) | |
cand_toks, cand_mask = self.binarize_with_mask( | |
cand_text, | |
prefix, | |
suffix, | |
leading_space, | |
trailing_space, | |
) | |
candidate_tokens.append(cand_toks) | |
candidate_masks.append(cand_mask) | |
candidate_lengths.append(cand_toks.size(0)) | |
query_lengths = np.array(query_lengths) | |
def get_pad_dataset_fn(tokens, length, pad_idx): | |
return PadDataset( | |
ListDataset(tokens, length), | |
pad_idx=pad_idx, | |
left_pad=False, | |
) | |
query_tokens = get_pad_dataset_fn(query_tokens, query_lengths, self.vocab.pad()) | |
query_masks = get_pad_dataset_fn(query_masks, query_lengths, 0) | |
candidate_lengths = np.array(candidate_lengths) | |
candidate_tokens = get_pad_dataset_fn( | |
candidate_tokens, candidate_lengths, self.vocab.pad() | |
) | |
candidate_masks = get_pad_dataset_fn(candidate_masks, candidate_lengths, 0) | |
dataset = { | |
"id": IdDataset(), | |
"query_tokens": query_tokens, | |
"query_masks": query_masks, | |
"candidate_tokens": candidate_tokens, | |
"candidate_masks": candidate_masks, | |
"nsentences": NumSamplesDataset(), | |
"ntokens": NumelDataset(query_tokens, reduce=True), | |
} | |
nested_dataset = NestedDictionaryDataset( | |
dataset, | |
sizes=[query_lengths], | |
) | |
with data_utils.numpy_seed(self.args.seed): | |
shuffle = np.random.permutation(len(query_tokens)) | |
dataset = SortDataset( | |
nested_dataset, | |
# shuffle | |
sort_order=[shuffle], | |
) | |
if return_only: | |
return dataset | |
self.datasets[split] = dataset | |
return self.datasets[split] | |