JustinLin610
update
10b0761
raw
history blame
9.93 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
from collections import Counter, defaultdict
import pandas as pd
import torchaudio
from tqdm import tqdm
from fairseq.data.audio.audio_utils import convert_waveform
from examples.speech_to_text.data_utils import (
create_zip,
gen_config_yaml,
gen_vocab,
get_zip_manifest,
load_tsv_to_dicts,
save_df_to_tsv
)
from examples.speech_synthesis.data_utils import (
extract_logmel_spectrogram, extract_pitch, extract_energy, get_global_cmvn,
ipa_phonemize, get_mfa_alignment, get_unit_alignment
)
log = logging.getLogger(__name__)
def process(args):
assert "train" in args.splits
out_root = Path(args.output_root).absolute()
out_root.mkdir(exist_ok=True)
print("Fetching data...")
audio_manifest_root = Path(args.audio_manifest_root).absolute()
samples = []
for s in args.splits:
for e in load_tsv_to_dicts(audio_manifest_root / f"{s}.audio.tsv"):
e["split"] = s
samples.append(e)
sample_ids = [s["id"] for s in samples]
# Get alignment info
id_to_alignment = None
if args.textgrid_zip is not None:
assert args.id_to_units_tsv is None
id_to_alignment = get_mfa_alignment(
args.textgrid_zip, sample_ids, args.sample_rate, args.hop_length
)
elif args.id_to_units_tsv is not None:
# assume identical hop length on the unit sequence
id_to_alignment = get_unit_alignment(args.id_to_units_tsv, sample_ids)
# Extract features and pack features into ZIP
feature_name = "logmelspec80"
zip_path = out_root / f"{feature_name}.zip"
pitch_zip_path = out_root / "pitch.zip"
energy_zip_path = out_root / "energy.zip"
gcmvn_npz_path = out_root / "gcmvn_stats.npz"
if zip_path.exists() and gcmvn_npz_path.exists():
print(f"{zip_path} and {gcmvn_npz_path} exist.")
else:
feature_root = out_root / feature_name
feature_root.mkdir(exist_ok=True)
pitch_root = out_root / "pitch"
energy_root = out_root / "energy"
if args.add_fastspeech_targets:
pitch_root.mkdir(exist_ok=True)
energy_root.mkdir(exist_ok=True)
print("Extracting Mel spectrogram features...")
for sample in tqdm(samples):
waveform, sample_rate = torchaudio.load(sample["audio"])
waveform, sample_rate = convert_waveform(
waveform, sample_rate, normalize_volume=args.normalize_volume,
to_sample_rate=args.sample_rate
)
sample_id = sample["id"]
target_length = None
if id_to_alignment is not None:
a = id_to_alignment[sample_id]
target_length = sum(a.frame_durations)
if a.start_sec is not None and a.end_sec is not None:
start_frame = int(a.start_sec * sample_rate)
end_frame = int(a.end_sec * sample_rate)
waveform = waveform[:, start_frame: end_frame]
extract_logmel_spectrogram(
waveform, sample_rate, feature_root / f"{sample_id}.npy",
win_length=args.win_length, hop_length=args.hop_length,
n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min,
f_max=args.f_max, target_length=target_length
)
if args.add_fastspeech_targets:
assert id_to_alignment is not None
extract_pitch(
waveform, sample_rate, pitch_root / f"{sample_id}.npy",
hop_length=args.hop_length, log_scale=True,
phoneme_durations=id_to_alignment[sample_id].frame_durations
)
extract_energy(
waveform, energy_root / f"{sample_id}.npy",
hop_length=args.hop_length, n_fft=args.n_fft,
log_scale=True,
phoneme_durations=id_to_alignment[sample_id].frame_durations
)
print("ZIPing features...")
create_zip(feature_root, zip_path)
get_global_cmvn(feature_root, gcmvn_npz_path)
shutil.rmtree(feature_root)
if args.add_fastspeech_targets:
create_zip(pitch_root, pitch_zip_path)
shutil.rmtree(pitch_root)
create_zip(energy_root, energy_zip_path)
shutil.rmtree(energy_root)
print("Fetching ZIP manifest...")
audio_paths, audio_lengths = get_zip_manifest(zip_path)
pitch_paths, pitch_lengths, energy_paths, energy_lengths = [None] * 4
if args.add_fastspeech_targets:
pitch_paths, pitch_lengths = get_zip_manifest(pitch_zip_path)
energy_paths, energy_lengths = get_zip_manifest(energy_zip_path)
# Generate TSV manifest
print("Generating manifest...")
manifest_by_split = {split: defaultdict(list) for split in args.splits}
for sample in tqdm(samples):
sample_id, split = sample["id"], sample["split"]
normalized_utt = sample["tgt_text"]
if id_to_alignment is not None:
normalized_utt = " ".join(id_to_alignment[sample_id].tokens)
elif args.ipa_vocab:
normalized_utt = ipa_phonemize(
normalized_utt, lang=args.lang, use_g2p=args.use_g2p
)
manifest_by_split[split]["id"].append(sample_id)
manifest_by_split[split]["audio"].append(audio_paths[sample_id])
manifest_by_split[split]["n_frames"].append(audio_lengths[sample_id])
manifest_by_split[split]["tgt_text"].append(normalized_utt)
manifest_by_split[split]["speaker"].append(sample["speaker"])
manifest_by_split[split]["src_text"].append(sample["src_text"])
if args.add_fastspeech_targets:
assert id_to_alignment is not None
duration = " ".join(
str(d) for d in id_to_alignment[sample_id].frame_durations
)
manifest_by_split[split]["duration"].append(duration)
manifest_by_split[split]["pitch"].append(pitch_paths[sample_id])
manifest_by_split[split]["energy"].append(energy_paths[sample_id])
for split in args.splits:
save_df_to_tsv(
pd.DataFrame.from_dict(manifest_by_split[split]),
out_root / f"{split}.tsv"
)
# Generate vocab
vocab_name, spm_filename = None, None
if id_to_alignment is not None or args.ipa_vocab:
vocab = Counter()
for t in manifest_by_split["train"]["tgt_text"]:
vocab.update(t.split(" "))
vocab_name = "vocab.txt"
with open(out_root / vocab_name, "w") as f:
for s, c in vocab.most_common():
f.write(f"{s} {c}\n")
else:
spm_filename_prefix = "spm_char"
spm_filename = f"{spm_filename_prefix}.model"
with NamedTemporaryFile(mode="w") as f:
for t in manifest_by_split["train"]["tgt_text"]:
f.write(t + "\n")
f.flush() # needed to ensure gen_vocab sees dumped text
gen_vocab(Path(f.name), out_root / spm_filename_prefix, "char")
# Generate speaker list
speakers = sorted({sample["speaker"] for sample in samples})
speakers_path = out_root / "speakers.txt"
with open(speakers_path, "w") as f:
for speaker in speakers:
f.write(f"{speaker}\n")
# Generate config YAML
win_len_t = args.win_length / args.sample_rate
hop_len_t = args.hop_length / args.sample_rate
extra = {
"sample_rate": args.sample_rate,
"features": {
"type": "spectrogram+melscale+log",
"eps": 1e-2, "n_mels": args.n_mels, "n_fft": args.n_fft,
"window_fn": "hann", "win_length": args.win_length,
"hop_length": args.hop_length, "sample_rate": args.sample_rate,
"win_len_t": win_len_t, "hop_len_t": hop_len_t,
"f_min": args.f_min, "f_max": args.f_max,
"n_stft": args.n_fft // 2 + 1
}
}
if len(speakers) > 1:
extra["speaker_set_filename"] = "speakers.txt"
gen_config_yaml(
out_root, spm_filename=spm_filename, vocab_name=vocab_name,
audio_root=out_root.as_posix(), input_channels=None,
input_feat_per_channel=None, specaugment_policy=None,
cmvn_type="global", gcmvn_path=gcmvn_npz_path, extra=extra
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-manifest-root", "-m", required=True, type=str)
parser.add_argument("--output-root", "-o", required=True, type=str)
parser.add_argument("--splits", "-s", type=str, nargs="+",
default=["train", "dev", "test"])
parser.add_argument("--ipa-vocab", action="store_true")
parser.add_argument("--use-g2p", action="store_true")
parser.add_argument("--lang", type=str, default="en-us")
parser.add_argument("--win-length", type=int, default=1024)
parser.add_argument("--hop-length", type=int, default=256)
parser.add_argument("--n-fft", type=int, default=1024)
parser.add_argument("--n-mels", type=int, default=80)
parser.add_argument("--f-min", type=int, default=20)
parser.add_argument("--f-max", type=int, default=8000)
parser.add_argument("--sample-rate", type=int, default=22050)
parser.add_argument("--normalize-volume", "-n", action="store_true")
parser.add_argument("--textgrid-zip", type=str, default=None)
parser.add_argument("--id-to-units-tsv", type=str, default=None)
parser.add_argument("--add-fastspeech-targets", action="store_true")
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()