Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import collections | |
import os | |
import shutil | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from scripts.average_checkpoints import average_checkpoints | |
from torch import nn | |
class ModelWithSharedParameter(nn.Module): | |
def __init__(self): | |
super(ModelWithSharedParameter, self).__init__() | |
self.embedding = nn.Embedding(1000, 200) | |
self.FC1 = nn.Linear(200, 200) | |
self.FC2 = nn.Linear(200, 200) | |
# tie weight in FC2 to FC1 | |
self.FC2.weight = nn.Parameter(self.FC1.weight) | |
self.FC2.bias = nn.Parameter(self.FC1.bias) | |
self.relu = nn.ReLU() | |
def forward(self, input): | |
return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input) | |
class TestAverageCheckpoints(unittest.TestCase): | |
def test_average_checkpoints(self): | |
params_0 = collections.OrderedDict( | |
[ | |
("a", torch.DoubleTensor([100.0])), | |
("b", torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])), | |
("c", torch.IntTensor([7, 8, 9])), | |
] | |
) | |
params_1 = collections.OrderedDict( | |
[ | |
("a", torch.DoubleTensor([1.0])), | |
("b", torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])), | |
("c", torch.IntTensor([2, 2, 2])), | |
] | |
) | |
params_avg = collections.OrderedDict( | |
[ | |
("a", torch.DoubleTensor([50.5])), | |
("b", torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])), | |
# We expect truncation for integer division | |
("c", torch.IntTensor([4, 5, 5])), | |
] | |
) | |
fd_0, path_0 = tempfile.mkstemp() | |
fd_1, path_1 = tempfile.mkstemp() | |
torch.save(collections.OrderedDict([("model", params_0)]), path_0) | |
torch.save(collections.OrderedDict([("model", params_1)]), path_1) | |
output = average_checkpoints([path_0, path_1])["model"] | |
os.close(fd_0) | |
os.remove(path_0) | |
os.close(fd_1) | |
os.remove(path_1) | |
for (k_expected, v_expected), (k_out, v_out) in zip( | |
params_avg.items(), output.items() | |
): | |
self.assertEqual( | |
k_expected, | |
k_out, | |
"Key mismatch - expected {} but found {}. " | |
"(Expected list of keys: {} vs actual list of keys: {})".format( | |
k_expected, k_out, params_avg.keys(), output.keys() | |
), | |
) | |
np.testing.assert_allclose( | |
v_expected.numpy(), | |
v_out.numpy(), | |
err_msg="Tensor value mismatch for key {}".format(k_expected), | |
) | |
def test_average_checkpoints_with_shared_parameters(self): | |
def _construct_model_with_shared_parameters(path, value): | |
m = ModelWithSharedParameter() | |
nn.init.constant_(m.FC1.weight, value) | |
torch.save({"model": m.state_dict()}, path) | |
return m | |
tmpdir = tempfile.mkdtemp() | |
paths = [] | |
path = os.path.join(tmpdir, "m1.pt") | |
m1 = _construct_model_with_shared_parameters(path, 1.0) | |
paths.append(path) | |
path = os.path.join(tmpdir, "m2.pt") | |
m2 = _construct_model_with_shared_parameters(path, 2.0) | |
paths.append(path) | |
path = os.path.join(tmpdir, "m3.pt") | |
m3 = _construct_model_with_shared_parameters(path, 3.0) | |
paths.append(path) | |
new_model = average_checkpoints(paths) | |
self.assertTrue( | |
torch.equal( | |
new_model["model"]["embedding.weight"], | |
(m1.embedding.weight + m2.embedding.weight + m3.embedding.weight) / 3.0, | |
) | |
) | |
self.assertTrue( | |
torch.equal( | |
new_model["model"]["FC1.weight"], | |
(m1.FC1.weight + m2.FC1.weight + m3.FC1.weight) / 3.0, | |
) | |
) | |
self.assertTrue( | |
torch.equal( | |
new_model["model"]["FC2.weight"], | |
(m1.FC2.weight + m2.FC2.weight + m3.FC2.weight) / 3.0, | |
) | |
) | |
shutil.rmtree(tmpdir) | |
if __name__ == "__main__": | |
unittest.main() | |