JustinLin610's picture
first commit
ee21b96
raw
history blame
15.4 kB
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
from dataclasses import dataclass, field
import logging
import math
import os
from typing import Optional
import torch
from fairseq.logging import metrics
from fairseq.tasks import FairseqTask, register_task
from ..data import ExtractedFeaturesDataset, RandomInputDataset
from fairseq.data import (
Dictionary,
data_utils,
StripTokenDataset,
)
from fairseq.dataclass import FairseqDataclass
from fairseq.distributed.utils import get_data_parallel_world_size
from omegaconf import MISSING
from examples.speech_recognition.kaldi.kaldi_decoder import (
KaldiDecoder,
KaldiDecoderConfig,
)
logger = logging.getLogger(__name__)
@dataclass
class DecodingConfig(FairseqDataclass):
kenlm_path: Optional[str] = None
lm_weight: float = 0
blank_weight: float = 0
@dataclass
class UnpairedAudioTextConfig(FairseqDataclass):
data: str = field(
default=MISSING, metadata={"help": "path to data directory containing audio"}
)
text_data: str = field(
default=MISSING, metadata={"help": "path to data directory containing text"}
)
max_length: Optional[int] = None
labels: Optional[str] = field(
default=None,
metadata={"help": "extension of the label file to load, used for fine-tuning"},
)
unfiltered: bool = field(
default=False, metadata={"help": "load data with _unfiltered suffix"}
)
ctc_eval: bool = field(
default=False, metadata={"help": "eval UER as if computed by CTC"}
)
sort_by_length: bool = field(
default=True, metadata={"help": "sort examples by length of audio timesteps"}
)
shuffle: bool = field(default=True, metadata={"help": "shuffle examples"})
append_eos: bool = field(default=False, metadata={"help": "append eos"})
uppercase: Optional[bool] = field(
default=False, metadata={"help": "uppercase for LM score computation"}
)
skipwords: Optional[str] = field(
default="",
metadata={
"help": "comma-separated words to be removed for LM score computation"
},
)
kenlm_path: Optional[str] = None
vocab_usage_power: float = 2
word_decoder_config: Optional[KaldiDecoderConfig] = None
word_kenlm_path: Optional[str] = None
decoding_config: DecodingConfig = DecodingConfig()
@register_task("unpaired_audio_text", dataclass=UnpairedAudioTextConfig)
class UnpairedAudioText(FairseqTask):
""" """
cfg: UnpairedAudioTextConfig
def __init__(
self,
cfg: UnpairedAudioTextConfig,
source_dictionary=None,
target_dictionary=None,
):
super().__init__(cfg)
self._target_dictionary = target_dictionary
self._source_dictionary = source_dictionary
self.num_symbols = (
len([s for s in target_dictionary.symbols if not s.startswith("madeup")])
- target_dictionary.nspecial
)
self.sil_id = (
target_dictionary.index("<SIL>") if "<SIL>" in target_dictionary else -1
)
self.kenlm = None
if cfg.kenlm_path is not None:
import kenlm
self.kenlm = kenlm.Model(cfg.kenlm_path)
self.word_kenlm = None
if cfg.word_kenlm_path is not None:
import kenlm
self.word_kenlm = kenlm.Model(cfg.word_kenlm_path)
self.uppercase = cfg.uppercase
self.skipwords = set(cfg.skipwords.split(","))
def str_postprocess(s):
s = " ".join(w for w in s.split() if w not in self.skipwords)
s = s.upper() if self.uppercase else s
return s
self.str_postprocess = str_postprocess
self.compute_lm_score = lambda s: self.kenlm.score(self.str_postprocess(s))
self.compute_word_score = None
if cfg.word_decoder_config is not None:
self.kaldi_decoder = KaldiDecoder(cfg.word_decoder_config, beam=10)
def compute_word_score(logits, padding):
res = self.kaldi_decoder.decode(logits, padding)
for r in res:
r = r.result()
assert len(r) == 1
r = r[0]
yield r["score"], r["words"]
self.compute_word_score = compute_word_score
@classmethod
def setup_task(cls, cfg: UnpairedAudioTextConfig, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
cfg (AudioPretrainingConfig): configuration of this task
"""
dict_path = os.path.join(cfg.text_data, "dict.txt")
if os.path.exists(dict_path):
target_dictionary = Dictionary.load(dict_path)
else:
dict_path = os.path.join(cfg.data, f"dict.{cfg.labels}.txt")
target_dictionary = Dictionary.load(dict_path)
return cls(cfg, target_dictionary=target_dictionary)
def optimizer_step(self, optimizer, model, update_num):
if hasattr(model, "get_groups_for_update"):
groups = model.get_groups_for_update(update_num)
optimizer.step(groups={groups})
else:
optimizer.step()
def valid_step(self, sample, model, criterion):
res = model(
**sample["net_input"],
dense_x_only=True,
)
dense_x = res["logits"]
padding_mask = res["padding_mask"]
word_scores = None
if self.compute_word_score is not None:
word_scores = self.compute_word_score(dense_x.cpu(), padding_mask.cpu())
z = dense_x.argmax(-1)
z[padding_mask] = self.target_dictionary.pad()
vocab_seen = torch.zeros(self.num_symbols, dtype=torch.bool)
import editdistance
c_err = 0
c_len = 0
pred_c_len = 0
lm_score_sum = 0
for i, (x, t, id) in enumerate(
zip(
z,
sample["target"] if "target" in sample else [None] * len(z),
sample["id"],
)
):
if t is not None:
t = t[(t >= self.target_dictionary.nspecial)]
x = x[
(x >= self.target_dictionary.nspecial)
& (x < (self.num_symbols + self.target_dictionary.nspecial))
]
if self.sil_id >= 0:
x = x[x != self.sil_id]
vocab_seen[x - self.target_dictionary.nspecial] = True
pred_units_arr = x
if self.cfg.ctc_eval:
pred_units_arr = pred_units_arr.unique_consecutive()
pred_units_arr = pred_units_arr[pred_units_arr != 0]
if id == 0:
if t is not None:
logger.info(f"REF: {self.target_dictionary.string(t)}")
logger.info(f"HYP: {self.target_dictionary.string(pred_units_arr)}")
if self.kenlm is not None:
if t is not None:
ref_lm_s = self.compute_lm_score(
self.target_dictionary.string(t)
)
logger.info(
f"LM [REF]: {ref_lm_s}, {math.pow(10, -ref_lm_s / (len(t) + 1))}"
)
hyp_lm_s = self.compute_lm_score(
self.target_dictionary.string(pred_units_arr)
)
logger.info(
f"LM [HYP]: {hyp_lm_s}, {math.pow(10, -hyp_lm_s / (len(pred_units_arr) + 1))}"
)
pred_units_arr = pred_units_arr.tolist()
pred_c_len += len(pred_units_arr)
if t is not None:
t = t.tolist()
c_err += editdistance.eval(pred_units_arr, t)
c_len += len(t)
else:
c_len = pred_c_len
if self.kenlm is not None:
pred_str = self.target_dictionary.string(pred_units_arr)
lm_score = self.compute_lm_score(pred_str)
lm_score_sum += lm_score
kaldi_score_sum = 0
word_lm_sum = 0
num_words = 0
if word_scores is not None:
for score, words in word_scores:
kaldi_score_sum += score
num_words += len(words)
if self.word_kenlm is not None:
word_lm_sum += self.kenlm.score(" ".join(words))
try:
world_size = get_data_parallel_world_size()
except:
world_size = 1
logging_output = {
"loss": c_err,
"_num_char_errors": c_err,
"_num_chars": c_len,
"_num_pred_chars": pred_c_len,
"ntokens": c_len,
"nsentences": z.size(0),
"sample_size": c_len,
"_world_size": world_size,
"_lm_score_sum": lm_score_sum,
"_kaldi_score_sum": kaldi_score_sum,
"_word_lm_sum": word_lm_sum,
"_num_words": num_words,
"_vocab_seen": vocab_seen,
}
return c_err, c_len, logging_output
def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs):
data_path = self.cfg.data
task_cfg = task_cfg or self.cfg
has_unpaired_text = os.path.exists(
os.path.join(self.cfg.text_data, f"{split}.idx")
)
self.datasets[split] = ExtractedFeaturesDataset(
path=data_path,
split=split,
min_length=3,
max_length=task_cfg.max_length,
labels=None if has_unpaired_text else task_cfg.labels,
label_dict=self.target_dictionary,
shuffle=getattr(task_cfg, "shuffle", True),
sort_by_length=task_cfg.sort_by_length,
)
logger.info(f"split {split} has unpaired text? {has_unpaired_text}")
if has_unpaired_text:
text_dataset = data_utils.load_indexed_dataset(
os.path.join(self.cfg.text_data, split), self.target_dictionary
)
text_dataset = StripTokenDataset(text_dataset, self.target_dictionary.eos())
self.datasets[split] = RandomInputDataset(
self.datasets[split],
text_dataset,
["random_label"],
add_to_input=True,
pad_idx=self.target_dictionary.pad(),
)
@property
def source_dictionary(self):
return self._source_dictionary
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self._target_dictionary
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
zero = torch.scalar_tensor(0.0)
num_char_errors = sum(
log.get("_num_char_errors", zero) for log in logging_outputs
)
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
num_word_errors = sum(
log.get("_num_word_errors", zero) for log in logging_outputs
)
num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
num_pred_chars = sum(
log.get("_num_pred_chars", zero) for log in logging_outputs
)
lm_score_sum = sum(log.get("_lm_score_sum", zero) for log in logging_outputs)
vocab_seen = (
sum(log.get("_vocab_seen", zero) for log in logging_outputs)
.bool()
.sum()
.item()
)
kaldi_score_sum = sum(
log.get("_kaldi_score_sum", zero) for log in logging_outputs
)
word_lm_sum = sum(log.get("_word_lm_sum", zero) for log in logging_outputs)
metrics.log_scalar_sum("_num_char_errors", num_char_errors)
metrics.log_scalar_sum("_num_chars", num_chars)
metrics.log_scalar_sum("_num_word_errors", num_word_errors)
metrics.log_scalar_sum("_num_words", num_words)
metrics.log_scalar_sum("lm_score_sum", lm_score_sum)
metrics.log_scalar_sum("num_pred_chars", num_pred_chars)
if self.cfg.word_kenlm_path is not None:
metrics.log_scalar_sum("kaldi_score_sum", kaldi_score_sum)
metrics.log_scalar_sum("word_lm_sum", word_lm_sum)
if num_chars > 0:
metrics.log_derived(
"uer",
lambda meters: meters["_num_char_errors"].sum
* 100.0
/ meters["_num_chars"].sum
if meters["_num_chars"].sum > 0
else float("nan"),
)
if lm_score_sum < 0 and vocab_seen > 0:
metrics.log_scalar("vocab_seen_pct", vocab_seen / self.num_symbols)
metrics.log_derived(
"weighted_lm_ppl",
lambda meters: math.pow(
10,
-meters["lm_score_sum"].sum
/ (
meters["num_pred_chars"].sum + meters["nsentences"].sum
), # account for </s>
)
/ meters["vocab_seen_pct"].avg ** self.cfg.vocab_usage_power,
)
metrics.log_derived(
"lm_ppl",
lambda meters: math.pow(
10,
-meters["lm_score_sum"].sum
/ (
meters["num_pred_chars"].sum + meters["nsentences"].sum
), # account for </s>
),
)
else:
metrics.log_derived("weighted_lm_ppl", lambda meters: float("inf"))
if num_words > 0:
if word_lm_sum != 0:
metrics.log_derived(
"word_lm_ppl",
lambda meters: math.pow(
10,
-meters["word_lm_sum"].sum
/ (
meters["_num_words"].sum + meters["nsentences"].sum
), # account for </s>
),
)
metrics.log_derived(
"weighted_word_lm_ppl",
lambda meters: math.pow(
10,
-meters["word_lm_sum"].sum
/ (
meters["_num_words"].sum + meters["nsentences"].sum
), # account for </s>
)
/ meters["vocab_seen_pct"].avg ** self.cfg.vocab_usage_power,
)
if self.cfg.word_kenlm_path is not None:
metrics.log_derived(
"kaldi_score",
lambda meters: meters["kaldi_score_sum"].sum
/ meters["nsentences"].sum,
)
def build_model(self, cfg: FairseqDataclass):
model = super().build_model(cfg)
return model