Spaces:
Runtime error
Runtime error
# Copyright (c) 2017-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the LICENSE file in | |
# the root directory of this source tree. An additional grant of patent rights | |
# can be found in the PATENTS file in the same directory. | |
from dataclasses import dataclass, field | |
import logging | |
import math | |
import os | |
from typing import Optional | |
import torch | |
from fairseq.logging import metrics | |
from fairseq.tasks import FairseqTask, register_task | |
from ..data import ExtractedFeaturesDataset, RandomInputDataset | |
from fairseq.data import ( | |
Dictionary, | |
data_utils, | |
StripTokenDataset, | |
) | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.distributed.utils import get_data_parallel_world_size | |
from omegaconf import MISSING | |
from examples.speech_recognition.kaldi.kaldi_decoder import ( | |
KaldiDecoder, | |
KaldiDecoderConfig, | |
) | |
logger = logging.getLogger(__name__) | |
class DecodingConfig(FairseqDataclass): | |
kenlm_path: Optional[str] = None | |
lm_weight: float = 0 | |
blank_weight: float = 0 | |
class UnpairedAudioTextConfig(FairseqDataclass): | |
data: str = field( | |
default=MISSING, metadata={"help": "path to data directory containing audio"} | |
) | |
text_data: str = field( | |
default=MISSING, metadata={"help": "path to data directory containing text"} | |
) | |
max_length: Optional[int] = None | |
labels: Optional[str] = field( | |
default=None, | |
metadata={"help": "extension of the label file to load, used for fine-tuning"}, | |
) | |
unfiltered: bool = field( | |
default=False, metadata={"help": "load data with _unfiltered suffix"} | |
) | |
ctc_eval: bool = field( | |
default=False, metadata={"help": "eval UER as if computed by CTC"} | |
) | |
sort_by_length: bool = field( | |
default=True, metadata={"help": "sort examples by length of audio timesteps"} | |
) | |
shuffle: bool = field(default=True, metadata={"help": "shuffle examples"}) | |
append_eos: bool = field(default=False, metadata={"help": "append eos"}) | |
uppercase: Optional[bool] = field( | |
default=False, metadata={"help": "uppercase for LM score computation"} | |
) | |
skipwords: Optional[str] = field( | |
default="", | |
metadata={ | |
"help": "comma-separated words to be removed for LM score computation" | |
}, | |
) | |
kenlm_path: Optional[str] = None | |
vocab_usage_power: float = 2 | |
word_decoder_config: Optional[KaldiDecoderConfig] = None | |
word_kenlm_path: Optional[str] = None | |
decoding_config: DecodingConfig = DecodingConfig() | |
class UnpairedAudioText(FairseqTask): | |
""" """ | |
cfg: UnpairedAudioTextConfig | |
def __init__( | |
self, | |
cfg: UnpairedAudioTextConfig, | |
source_dictionary=None, | |
target_dictionary=None, | |
): | |
super().__init__(cfg) | |
self._target_dictionary = target_dictionary | |
self._source_dictionary = source_dictionary | |
self.num_symbols = ( | |
len([s for s in target_dictionary.symbols if not s.startswith("madeup")]) | |
- target_dictionary.nspecial | |
) | |
self.sil_id = ( | |
target_dictionary.index("<SIL>") if "<SIL>" in target_dictionary else -1 | |
) | |
self.kenlm = None | |
if cfg.kenlm_path is not None: | |
import kenlm | |
self.kenlm = kenlm.Model(cfg.kenlm_path) | |
self.word_kenlm = None | |
if cfg.word_kenlm_path is not None: | |
import kenlm | |
self.word_kenlm = kenlm.Model(cfg.word_kenlm_path) | |
self.uppercase = cfg.uppercase | |
self.skipwords = set(cfg.skipwords.split(",")) | |
def str_postprocess(s): | |
s = " ".join(w for w in s.split() if w not in self.skipwords) | |
s = s.upper() if self.uppercase else s | |
return s | |
self.str_postprocess = str_postprocess | |
self.compute_lm_score = lambda s: self.kenlm.score(self.str_postprocess(s)) | |
self.compute_word_score = None | |
if cfg.word_decoder_config is not None: | |
self.kaldi_decoder = KaldiDecoder(cfg.word_decoder_config, beam=10) | |
def compute_word_score(logits, padding): | |
res = self.kaldi_decoder.decode(logits, padding) | |
for r in res: | |
r = r.result() | |
assert len(r) == 1 | |
r = r[0] | |
yield r["score"], r["words"] | |
self.compute_word_score = compute_word_score | |
def setup_task(cls, cfg: UnpairedAudioTextConfig, **kwargs): | |
"""Setup the task (e.g., load dictionaries). | |
Args: | |
cfg (AudioPretrainingConfig): configuration of this task | |
""" | |
dict_path = os.path.join(cfg.text_data, "dict.txt") | |
if os.path.exists(dict_path): | |
target_dictionary = Dictionary.load(dict_path) | |
else: | |
dict_path = os.path.join(cfg.data, f"dict.{cfg.labels}.txt") | |
target_dictionary = Dictionary.load(dict_path) | |
return cls(cfg, target_dictionary=target_dictionary) | |
def optimizer_step(self, optimizer, model, update_num): | |
if hasattr(model, "get_groups_for_update"): | |
groups = model.get_groups_for_update(update_num) | |
optimizer.step(groups={groups}) | |
else: | |
optimizer.step() | |
def valid_step(self, sample, model, criterion): | |
res = model( | |
**sample["net_input"], | |
dense_x_only=True, | |
) | |
dense_x = res["logits"] | |
padding_mask = res["padding_mask"] | |
word_scores = None | |
if self.compute_word_score is not None: | |
word_scores = self.compute_word_score(dense_x.cpu(), padding_mask.cpu()) | |
z = dense_x.argmax(-1) | |
z[padding_mask] = self.target_dictionary.pad() | |
vocab_seen = torch.zeros(self.num_symbols, dtype=torch.bool) | |
import editdistance | |
c_err = 0 | |
c_len = 0 | |
pred_c_len = 0 | |
lm_score_sum = 0 | |
for i, (x, t, id) in enumerate( | |
zip( | |
z, | |
sample["target"] if "target" in sample else [None] * len(z), | |
sample["id"], | |
) | |
): | |
if t is not None: | |
t = t[(t >= self.target_dictionary.nspecial)] | |
x = x[ | |
(x >= self.target_dictionary.nspecial) | |
& (x < (self.num_symbols + self.target_dictionary.nspecial)) | |
] | |
if self.sil_id >= 0: | |
x = x[x != self.sil_id] | |
vocab_seen[x - self.target_dictionary.nspecial] = True | |
pred_units_arr = x | |
if self.cfg.ctc_eval: | |
pred_units_arr = pred_units_arr.unique_consecutive() | |
pred_units_arr = pred_units_arr[pred_units_arr != 0] | |
if id == 0: | |
if t is not None: | |
logger.info(f"REF: {self.target_dictionary.string(t)}") | |
logger.info(f"HYP: {self.target_dictionary.string(pred_units_arr)}") | |
if self.kenlm is not None: | |
if t is not None: | |
ref_lm_s = self.compute_lm_score( | |
self.target_dictionary.string(t) | |
) | |
logger.info( | |
f"LM [REF]: {ref_lm_s}, {math.pow(10, -ref_lm_s / (len(t) + 1))}" | |
) | |
hyp_lm_s = self.compute_lm_score( | |
self.target_dictionary.string(pred_units_arr) | |
) | |
logger.info( | |
f"LM [HYP]: {hyp_lm_s}, {math.pow(10, -hyp_lm_s / (len(pred_units_arr) + 1))}" | |
) | |
pred_units_arr = pred_units_arr.tolist() | |
pred_c_len += len(pred_units_arr) | |
if t is not None: | |
t = t.tolist() | |
c_err += editdistance.eval(pred_units_arr, t) | |
c_len += len(t) | |
else: | |
c_len = pred_c_len | |
if self.kenlm is not None: | |
pred_str = self.target_dictionary.string(pred_units_arr) | |
lm_score = self.compute_lm_score(pred_str) | |
lm_score_sum += lm_score | |
kaldi_score_sum = 0 | |
word_lm_sum = 0 | |
num_words = 0 | |
if word_scores is not None: | |
for score, words in word_scores: | |
kaldi_score_sum += score | |
num_words += len(words) | |
if self.word_kenlm is not None: | |
word_lm_sum += self.kenlm.score(" ".join(words)) | |
try: | |
world_size = get_data_parallel_world_size() | |
except: | |
world_size = 1 | |
logging_output = { | |
"loss": c_err, | |
"_num_char_errors": c_err, | |
"_num_chars": c_len, | |
"_num_pred_chars": pred_c_len, | |
"ntokens": c_len, | |
"nsentences": z.size(0), | |
"sample_size": c_len, | |
"_world_size": world_size, | |
"_lm_score_sum": lm_score_sum, | |
"_kaldi_score_sum": kaldi_score_sum, | |
"_word_lm_sum": word_lm_sum, | |
"_num_words": num_words, | |
"_vocab_seen": vocab_seen, | |
} | |
return c_err, c_len, logging_output | |
def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs): | |
data_path = self.cfg.data | |
task_cfg = task_cfg or self.cfg | |
has_unpaired_text = os.path.exists( | |
os.path.join(self.cfg.text_data, f"{split}.idx") | |
) | |
self.datasets[split] = ExtractedFeaturesDataset( | |
path=data_path, | |
split=split, | |
min_length=3, | |
max_length=task_cfg.max_length, | |
labels=None if has_unpaired_text else task_cfg.labels, | |
label_dict=self.target_dictionary, | |
shuffle=getattr(task_cfg, "shuffle", True), | |
sort_by_length=task_cfg.sort_by_length, | |
) | |
logger.info(f"split {split} has unpaired text? {has_unpaired_text}") | |
if has_unpaired_text: | |
text_dataset = data_utils.load_indexed_dataset( | |
os.path.join(self.cfg.text_data, split), self.target_dictionary | |
) | |
text_dataset = StripTokenDataset(text_dataset, self.target_dictionary.eos()) | |
self.datasets[split] = RandomInputDataset( | |
self.datasets[split], | |
text_dataset, | |
["random_label"], | |
add_to_input=True, | |
pad_idx=self.target_dictionary.pad(), | |
) | |
def source_dictionary(self): | |
return self._source_dictionary | |
def target_dictionary(self): | |
"""Return the :class:`~fairseq.data.Dictionary` for the language | |
model.""" | |
return self._target_dictionary | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return None | |
def reduce_metrics(self, logging_outputs, criterion): | |
super().reduce_metrics(logging_outputs, criterion) | |
zero = torch.scalar_tensor(0.0) | |
num_char_errors = sum( | |
log.get("_num_char_errors", zero) for log in logging_outputs | |
) | |
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) | |
num_word_errors = sum( | |
log.get("_num_word_errors", zero) for log in logging_outputs | |
) | |
num_words = sum(log.get("_num_words", zero) for log in logging_outputs) | |
num_pred_chars = sum( | |
log.get("_num_pred_chars", zero) for log in logging_outputs | |
) | |
lm_score_sum = sum(log.get("_lm_score_sum", zero) for log in logging_outputs) | |
vocab_seen = ( | |
sum(log.get("_vocab_seen", zero) for log in logging_outputs) | |
.bool() | |
.sum() | |
.item() | |
) | |
kaldi_score_sum = sum( | |
log.get("_kaldi_score_sum", zero) for log in logging_outputs | |
) | |
word_lm_sum = sum(log.get("_word_lm_sum", zero) for log in logging_outputs) | |
metrics.log_scalar_sum("_num_char_errors", num_char_errors) | |
metrics.log_scalar_sum("_num_chars", num_chars) | |
metrics.log_scalar_sum("_num_word_errors", num_word_errors) | |
metrics.log_scalar_sum("_num_words", num_words) | |
metrics.log_scalar_sum("lm_score_sum", lm_score_sum) | |
metrics.log_scalar_sum("num_pred_chars", num_pred_chars) | |
if self.cfg.word_kenlm_path is not None: | |
metrics.log_scalar_sum("kaldi_score_sum", kaldi_score_sum) | |
metrics.log_scalar_sum("word_lm_sum", word_lm_sum) | |
if num_chars > 0: | |
metrics.log_derived( | |
"uer", | |
lambda meters: meters["_num_char_errors"].sum | |
* 100.0 | |
/ meters["_num_chars"].sum | |
if meters["_num_chars"].sum > 0 | |
else float("nan"), | |
) | |
if lm_score_sum < 0 and vocab_seen > 0: | |
metrics.log_scalar("vocab_seen_pct", vocab_seen / self.num_symbols) | |
metrics.log_derived( | |
"weighted_lm_ppl", | |
lambda meters: math.pow( | |
10, | |
-meters["lm_score_sum"].sum | |
/ ( | |
meters["num_pred_chars"].sum + meters["nsentences"].sum | |
), # account for </s> | |
) | |
/ meters["vocab_seen_pct"].avg ** self.cfg.vocab_usage_power, | |
) | |
metrics.log_derived( | |
"lm_ppl", | |
lambda meters: math.pow( | |
10, | |
-meters["lm_score_sum"].sum | |
/ ( | |
meters["num_pred_chars"].sum + meters["nsentences"].sum | |
), # account for </s> | |
), | |
) | |
else: | |
metrics.log_derived("weighted_lm_ppl", lambda meters: float("inf")) | |
if num_words > 0: | |
if word_lm_sum != 0: | |
metrics.log_derived( | |
"word_lm_ppl", | |
lambda meters: math.pow( | |
10, | |
-meters["word_lm_sum"].sum | |
/ ( | |
meters["_num_words"].sum + meters["nsentences"].sum | |
), # account for </s> | |
), | |
) | |
metrics.log_derived( | |
"weighted_word_lm_ppl", | |
lambda meters: math.pow( | |
10, | |
-meters["word_lm_sum"].sum | |
/ ( | |
meters["_num_words"].sum + meters["nsentences"].sum | |
), # account for </s> | |
) | |
/ meters["vocab_seen_pct"].avg ** self.cfg.vocab_usage_power, | |
) | |
if self.cfg.word_kenlm_path is not None: | |
metrics.log_derived( | |
"kaldi_score", | |
lambda meters: meters["kaldi_score_sum"].sum | |
/ meters["nsentences"].sum, | |
) | |
def build_model(self, cfg: FairseqDataclass): | |
model = super().build_model(cfg) | |
return model | |