OFA-OCR / fairseq /examples /wav2vec /unsupervised /scripts /wav2vec_apply_cluster_faiss.py
JustinLin610's picture
first commit
ee21b96
raw
history blame
4.02 kB
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import os.path as osp
import numpy as np
import tqdm
import torch
import sys
import faiss
import torch.nn.functional as F
from wav2vec_cluster_faiss import parse_faiss_specs, Wav2VecFeatureReader
def get_parser():
parser = argparse.ArgumentParser(description="apply clusters")
# fmt: off
parser.add_argument('data', help='location of tsv files')
parser.add_argument('--split', help='split to process', required=True)
parser.add_argument('--labels', help='split to process', default="phn")
parser.add_argument('--path', help='path to pca and centroids', required=True)
parser.add_argument('--checkpoint', type=str, help='checkpoint for wav2vec model (if using wav2vec features)', required=True)
parser.add_argument('--layer', '-l', type=int, help='which layer to read', default=14)
parser.add_argument('--max-tsz', type=int, help='batch kmeans up to this much', default=14)
# fmt: on
return parser
def get_iterator(args):
label_path = osp.join(args.data, f"{args.split}.{args.labels}")
if osp.exists(label_path):
lp = open(label_path, "r")
else:
lp = None
with open(osp.join(args.data, f"{args.split}.tsv"), "r") as fp:
lines = fp.read().split("\n")
root = lines.pop(0).strip()
files = [line.rstrip() for line in lines if len(line) > 0]
if lp is not None:
lbls = [line.rstrip() for line in lp]
else:
lbls = [None] * len(files)
num = len(files)
reader = Wav2VecFeatureReader(args.checkpoint, args.layer)
def iterate():
for fname, lbl in zip(files, lbls):
file = osp.join(root, fname.split("\t")[0])
feats = reader.get_feats(file)
yield feats.data, fname, lbl
return iterate, num, root
def main():
parser = get_parser()
args = parser.parse_args()
spec = osp.basename(args.path)
try:
faiss_spec = parse_faiss_specs(spec.rstrip("/"))[0]
except:
print(spec)
raise
print("Faiss Spec:", faiss_spec, file=sys.stderr)
if faiss_spec.pca:
A = torch.from_numpy(np.load(osp.join(args.path, "pca_A.npy"))).cuda()
b = torch.from_numpy(np.load(osp.join(args.path, "pca_b.npy"))).cuda()
print("Loaded PCA", file=sys.stderr)
centroids = np.load(osp.join(args.path, "centroids.npy"))
print("Loaded centroids", centroids.shape, file=sys.stderr)
res = faiss.StandardGpuResources()
index_flat = (
faiss.IndexFlatL2(centroids.shape[1])
if not faiss_spec.sphere
else faiss.IndexFlatIP(centroids.shape[1])
)
faiss_index = faiss.index_cpu_to_gpu(res, 0, index_flat)
faiss_index.add(centroids)
generator, num, root = get_iterator(args)
iterator = generator()
had_labels = False
label_path = osp.join(args.path, f"{args.split}.{args.labels}")
with torch.no_grad():
with open(osp.join(args.path, f"{args.split}.src"), "w") as fp, open(
osp.join(args.path, f"{args.split}.tsv"), "w"
) as pp, open(label_path, "w") as lp:
print(root, file=pp)
for f, fname, lbl in tqdm.tqdm(iterator, total=num):
if faiss_spec.pca:
f = torch.mm(f, A) + b
if faiss_spec.norm:
f = F.normalize(f, p=2, dim=-1)
f = f.cpu().numpy()
_, z = faiss_index.search(f, 1)
print(" ".join(str(x.item()) for x in z), file=fp)
print(fname, file=pp)
if lbl is not None:
print(lbl, file=lp)
had_labels = True
if not had_labels:
os.remove(label_path)
if __name__ == "__main__":
main()