OFA-OCR / run_scripts /image_gen /inception_score.py
JustinLin610's picture
first commit
ee21b96
raw
history blame
3.32 kB
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torchvision.transforms as transforms
from torchvision.models.inception import inception_v3
from scipy.stats import entropy
from torch.autograd import Variable
from eval_utils.dataset import Dataset
from eval_utils.inceptionV3 import InceptionV3
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=64,
help='Batch size to use')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('-c', '--gpu', default='', type=str,
help='GPU to use (leave blank for CPU only)')
parser.add_argument('--path1', type=str, help='path to images')
def inception_score(imgs, cuda=True, batch_size=32, resize=False, splits=1):
"""Computes the inception score of the generated images imgs
imgs -- Torch dataset of (3xHxW) numpy images normalized in the range [-1, 1]
cuda -- whether or not to run on GPU
batch_size -- batch size for feeding into Inception v3
splits -- number of splits
"""
N = len(imgs)
assert batch_size > 0
if batch_size > N:
batch_size = N
# Set up dtype
if cuda:
dtype = torch.cuda.FloatTensor
else:
if torch.cuda.is_available():
print("WARNING: You have a CUDA device, so you should probably set cuda=True")
dtype = torch.FloatTensor
# Set up dataloader
dataloader = torch.utils.data.DataLoader(imgs, batch_size=batch_size)
# Load inception model
inception_model = inception_v3(pretrained=True, transform_input=False).type(dtype)
inception_model.eval()
up = nn.Upsample(size=(299, 299), mode='bilinear').type(dtype)
def get_pred(x):
if resize:
x = up(x)
x = inception_model(x)
return F.softmax(x).data.cpu().numpy()
# Get predictions
preds = np.zeros((N, 1000))
for i, batch in enumerate(dataloader, 0):
batch = batch.type(dtype)
batchv = Variable(batch)
batch_size_i = batch.size()[0]
preds[i * batch_size:i * batch_size + batch_size_i] = get_pred(batchv)
# Now compute the mean kl-div
split_scores = []
for k in range(splits):
part = preds[k * (N // splits): (k + 1) * (N // splits), :]
py = np.mean(part, axis=0)
scores = []
for i in range(part.shape[0]):
pyx = part[i, :]
scores.append(entropy(pyx, py))
split_scores.append(np.exp(np.mean(scores)))
return np.mean(split_scores), np.std(split_scores)
if __name__ == '__main__':
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
dataset = Dataset(args.path1, transforms.Compose([
transforms.Resize((299, 299)),
transforms.ToTensor(),
]))
mean, std = inception_score(dataset, cuda=True, batch_size=32, resize=False, splits=1)
print('IS mean: ', mean)
print('IS std: ', std)