Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import re | |
import sys | |
import torch | |
from examples.speech_recognition.data import AsrDataset | |
from examples.speech_recognition.data.replabels import replabel_symbol | |
from fairseq.data import Dictionary | |
from fairseq.tasks import LegacyFairseqTask, register_task | |
def get_asr_dataset_from_json(data_json_path, tgt_dict): | |
""" | |
Parse data json and create dataset. | |
See scripts/asr_prep_json.py which pack json from raw files | |
Json example: | |
{ | |
"utts": { | |
"4771-29403-0025": { | |
"input": { | |
"length_ms": 170, | |
"path": "/tmp/file1.flac" | |
}, | |
"output": { | |
"text": "HELLO \n", | |
"token": "HE LLO", | |
"tokenid": "4815, 861" | |
} | |
}, | |
"1564-142299-0096": { | |
... | |
} | |
} | |
""" | |
if not os.path.isfile(data_json_path): | |
raise FileNotFoundError("Dataset not found: {}".format(data_json_path)) | |
with open(data_json_path, "rb") as f: | |
data_samples = json.load(f)["utts"] | |
assert len(data_samples) != 0 | |
sorted_samples = sorted( | |
data_samples.items(), | |
key=lambda sample: int(sample[1]["input"]["length_ms"]), | |
reverse=True, | |
) | |
aud_paths = [s[1]["input"]["path"] for s in sorted_samples] | |
ids = [s[0] for s in sorted_samples] | |
speakers = [] | |
for s in sorted_samples: | |
m = re.search("(.+?)-(.+?)-(.+?)", s[0]) | |
speakers.append(m.group(1) + "_" + m.group(2)) | |
frame_sizes = [s[1]["input"]["length_ms"] for s in sorted_samples] | |
tgt = [ | |
[int(i) for i in s[1]["output"]["tokenid"].split(", ")] | |
for s in sorted_samples | |
] | |
# append eos | |
tgt = [[*t, tgt_dict.eos()] for t in tgt] | |
return AsrDataset(aud_paths, frame_sizes, tgt, tgt_dict, ids, speakers) | |
class SpeechRecognitionTask(LegacyFairseqTask): | |
""" | |
Task for training speech recognition model. | |
""" | |
def add_args(parser): | |
"""Add task-specific arguments to the parser.""" | |
parser.add_argument("data", help="path to data directory") | |
parser.add_argument( | |
"--silence-token", default="\u2581", help="token for silence (used by w2l)" | |
) | |
parser.add_argument( | |
"--max-source-positions", | |
default=sys.maxsize, | |
type=int, | |
metavar="N", | |
help="max number of frames in the source sequence", | |
) | |
parser.add_argument( | |
"--max-target-positions", | |
default=1024, | |
type=int, | |
metavar="N", | |
help="max number of tokens in the target sequence", | |
) | |
def __init__(self, args, tgt_dict): | |
super().__init__(args) | |
self.tgt_dict = tgt_dict | |
def setup_task(cls, args, **kwargs): | |
"""Setup the task (e.g., load dictionaries).""" | |
dict_path = os.path.join(args.data, "dict.txt") | |
if not os.path.isfile(dict_path): | |
raise FileNotFoundError("Dict not found: {}".format(dict_path)) | |
tgt_dict = Dictionary.load(dict_path) | |
if args.criterion == "ctc_loss": | |
tgt_dict.add_symbol("<ctc_blank>") | |
elif args.criterion == "asg_loss": | |
for i in range(1, args.max_replabel + 1): | |
tgt_dict.add_symbol(replabel_symbol(i)) | |
print("| dictionary: {} types".format(len(tgt_dict))) | |
return cls(args, tgt_dict) | |
def load_dataset(self, split, combine=False, **kwargs): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
data_json_path = os.path.join(self.args.data, "{}.json".format(split)) | |
self.datasets[split] = get_asr_dataset_from_json(data_json_path, self.tgt_dict) | |
def build_generator(self, models, args, **unused): | |
w2l_decoder = getattr(args, "w2l_decoder", None) | |
if w2l_decoder == "viterbi": | |
from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder | |
return W2lViterbiDecoder(args, self.target_dictionary) | |
elif w2l_decoder == "kenlm": | |
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder | |
return W2lKenLMDecoder(args, self.target_dictionary) | |
elif w2l_decoder == "fairseqlm": | |
from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder | |
return W2lFairseqLMDecoder(args, self.target_dictionary) | |
else: | |
return super().build_generator(models, args) | |
def target_dictionary(self): | |
"""Return the :class:`~fairseq.data.Dictionary` for the language | |
model.""" | |
return self.tgt_dict | |
def source_dictionary(self): | |
"""Return the source :class:`~fairseq.data.Dictionary` (if applicable | |
for this task).""" | |
return None | |
def max_positions(self): | |
"""Return the max speech and sentence length allowed by the task.""" | |
return (self.args.max_source_positions, self.args.max_target_positions) | |