Spaces:
Runtime error
Runtime error
OFA-OCR
/
fairseq
/examples
/discriminative_reranking_nmt
/models
/discriminative_reranking_model.py
from dataclasses import dataclass, field | |
import os | |
import torch | |
import torch.nn as nn | |
from fairseq import utils | |
from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
from fairseq.models import ( | |
BaseFairseqModel, | |
register_model, | |
) | |
from fairseq.models.roberta.model import RobertaClassificationHead | |
from fairseq.modules import ( | |
LayerNorm, | |
TransformerSentenceEncoder, | |
TransformerSentenceEncoderLayer, | |
) | |
ACTIVATION_FN_CHOICES = ChoiceEnum(utils.get_available_activation_fns()) | |
JOINT_CLASSIFICATION_CHOICES = ChoiceEnum(["none", "sent"]) | |
SENTENCE_REP_CHOICES = ChoiceEnum(["head", "meanpool", "maxpool"]) | |
def update_init_roberta_model_state(state): | |
""" | |
update the state_dict of a Roberta model for initializing | |
weights of the BertRanker | |
""" | |
for k in list(state.keys()): | |
if ".lm_head." in k or "version" in k: | |
del state[k] | |
continue | |
# remove 'encoder/decoder.sentence_encoder.' from the key | |
assert k.startswith("encoder.sentence_encoder.") or k.startswith( | |
"decoder.sentence_encoder." | |
), f"Cannot recognize parameter name {k}" | |
if "layernorm_embedding" in k: | |
new_k = k.replace(".layernorm_embedding.", ".emb_layer_norm.") | |
state[new_k[25:]] = state[k] | |
else: | |
state[k[25:]] = state[k] | |
del state[k] | |
class BaseRanker(nn.Module): | |
def __init__(self, args, task): | |
super().__init__() | |
self.separator_token = task.dictionary.eos() | |
self.padding_idx = task.dictionary.pad() | |
def forward(self, src_tokens): | |
raise NotImplementedError | |
def get_segment_labels(self, src_tokens): | |
segment_boundary = (src_tokens == self.separator_token).long() | |
segment_labels = ( | |
segment_boundary.cumsum(dim=1) | |
- segment_boundary | |
- (src_tokens == self.padding_idx).long() | |
) | |
return segment_labels | |
def get_positions(self, src_tokens, segment_labels): | |
segment_positions = ( | |
torch.arange(src_tokens.shape[1]) | |
.to(src_tokens.device) | |
.repeat(src_tokens.shape[0], 1) | |
) | |
segment_boundary = (src_tokens == self.separator_token).long() | |
_, col_idx = (segment_positions * segment_boundary).nonzero(as_tuple=True) | |
col_idx = torch.cat([torch.zeros(1).type_as(col_idx), col_idx]) | |
offset = torch.cat( | |
[ | |
torch.zeros(1).type_as(segment_boundary), | |
segment_boundary.sum(dim=1).cumsum(dim=0)[:-1], | |
] | |
) | |
segment_positions -= col_idx[segment_labels + offset.unsqueeze(1)] * ( | |
segment_labels != 0 | |
) | |
padding_mask = src_tokens.ne(self.padding_idx) | |
segment_positions = (segment_positions + 1) * padding_mask.type_as( | |
segment_positions | |
) + self.padding_idx | |
return segment_positions | |
class BertRanker(BaseRanker): | |
def __init__(self, args, task): | |
super(BertRanker, self).__init__(args, task) | |
init_model = getattr(args, "pretrained_model", "") | |
self.joint_layers = nn.ModuleList() | |
if os.path.isfile(init_model): | |
print(f"initialize weight from {init_model}") | |
from fairseq import hub_utils | |
x = hub_utils.from_pretrained( | |
os.path.dirname(init_model), | |
checkpoint_file=os.path.basename(init_model), | |
) | |
in_state_dict = x["models"][0].state_dict() | |
init_args = x["args"].model | |
num_positional_emb = init_args.max_positions + task.dictionary.pad() + 1 | |
# follow the setup in roberta | |
self.model = TransformerSentenceEncoder( | |
padding_idx=task.dictionary.pad(), | |
vocab_size=len(task.dictionary), | |
num_encoder_layers=getattr( | |
args, "encoder_layers", init_args.encoder_layers | |
), | |
embedding_dim=init_args.encoder_embed_dim, | |
ffn_embedding_dim=init_args.encoder_ffn_embed_dim, | |
num_attention_heads=init_args.encoder_attention_heads, | |
dropout=init_args.dropout, | |
attention_dropout=init_args.attention_dropout, | |
activation_dropout=init_args.activation_dropout, | |
num_segments=2, # add language embeddings | |
max_seq_len=num_positional_emb, | |
offset_positions_by_padding=False, | |
encoder_normalize_before=True, | |
apply_bert_init=True, | |
activation_fn=init_args.activation_fn, | |
freeze_embeddings=args.freeze_embeddings, | |
n_trans_layers_to_freeze=args.n_trans_layers_to_freeze, | |
) | |
# still need to learn segment embeddings as we added a second language embedding | |
if args.freeze_embeddings: | |
for p in self.model.segment_embeddings.parameters(): | |
p.requires_grad = False | |
update_init_roberta_model_state(in_state_dict) | |
print("loading weights from the pretrained model") | |
self.model.load_state_dict( | |
in_state_dict, strict=False | |
) # ignore mismatch in language embeddings | |
ffn_embedding_dim = init_args.encoder_ffn_embed_dim | |
num_attention_heads = init_args.encoder_attention_heads | |
dropout = init_args.dropout | |
attention_dropout = init_args.attention_dropout | |
activation_dropout = init_args.activation_dropout | |
activation_fn = init_args.activation_fn | |
classifier_embed_dim = getattr( | |
args, "embed_dim", init_args.encoder_embed_dim | |
) | |
if classifier_embed_dim != init_args.encoder_embed_dim: | |
self.transform_layer = nn.Linear( | |
init_args.encoder_embed_dim, classifier_embed_dim | |
) | |
else: | |
self.model = TransformerSentenceEncoder( | |
padding_idx=task.dictionary.pad(), | |
vocab_size=len(task.dictionary), | |
num_encoder_layers=args.encoder_layers, | |
embedding_dim=args.embed_dim, | |
ffn_embedding_dim=args.ffn_embed_dim, | |
num_attention_heads=args.attention_heads, | |
dropout=args.dropout, | |
attention_dropout=args.attention_dropout, | |
activation_dropout=args.activation_dropout, | |
max_seq_len=task.max_positions() | |
if task.max_positions() | |
else args.tokens_per_sample, | |
num_segments=2, | |
offset_positions_by_padding=False, | |
encoder_normalize_before=args.encoder_normalize_before, | |
apply_bert_init=args.apply_bert_init, | |
activation_fn=args.activation_fn, | |
) | |
classifier_embed_dim = args.embed_dim | |
ffn_embedding_dim = args.ffn_embed_dim | |
num_attention_heads = args.attention_heads | |
dropout = args.dropout | |
attention_dropout = args.attention_dropout | |
activation_dropout = args.activation_dropout | |
activation_fn = args.activation_fn | |
self.joint_classification = args.joint_classification | |
if args.joint_classification == "sent": | |
if args.joint_normalize_before: | |
self.joint_layer_norm = LayerNorm(classifier_embed_dim) | |
else: | |
self.joint_layer_norm = None | |
self.joint_layers = nn.ModuleList( | |
[ | |
TransformerSentenceEncoderLayer( | |
embedding_dim=classifier_embed_dim, | |
ffn_embedding_dim=ffn_embedding_dim, | |
num_attention_heads=num_attention_heads, | |
dropout=dropout, | |
attention_dropout=attention_dropout, | |
activation_dropout=activation_dropout, | |
activation_fn=activation_fn, | |
) | |
for _ in range(args.num_joint_layers) | |
] | |
) | |
self.classifier = RobertaClassificationHead( | |
classifier_embed_dim, | |
classifier_embed_dim, | |
1, # num_classes | |
"tanh", | |
args.classifier_dropout, | |
) | |
def forward(self, src_tokens, src_lengths): | |
segment_labels = self.get_segment_labels(src_tokens) | |
positions = self.get_positions(src_tokens, segment_labels) | |
inner_states, _ = self.model( | |
tokens=src_tokens, | |
segment_labels=segment_labels, | |
last_state_only=True, | |
positions=positions, | |
) | |
return inner_states[-1].transpose(0, 1) # T x B x C -> B x T x C | |
def sentence_forward(self, encoder_out, src_tokens=None, sentence_rep="head"): | |
# encoder_out: B x T x C | |
if sentence_rep == "head": | |
x = encoder_out[:, :1, :] | |
else: # 'meanpool', 'maxpool' | |
assert src_tokens is not None, "meanpool requires src_tokens input" | |
segment_labels = self.get_segment_labels(src_tokens) | |
padding_mask = src_tokens.ne(self.padding_idx) | |
encoder_mask = segment_labels * padding_mask.type_as(segment_labels) | |
if sentence_rep == "meanpool": | |
ntokens = torch.sum(encoder_mask, dim=1, keepdim=True) | |
x = torch.sum( | |
encoder_out * encoder_mask.unsqueeze(2), dim=1, keepdim=True | |
) / ntokens.unsqueeze(2).type_as(encoder_out) | |
else: # 'maxpool' | |
encoder_out[ | |
(encoder_mask == 0).unsqueeze(2).repeat(1, 1, encoder_out.shape[-1]) | |
] = -float("inf") | |
x, _ = torch.max(encoder_out, dim=1, keepdim=True) | |
if hasattr(self, "transform_layer"): | |
x = self.transform_layer(x) | |
return x # B x 1 x C | |
def joint_forward(self, x): | |
# x: T x B x C | |
if self.joint_layer_norm: | |
x = self.joint_layer_norm(x.transpose(0, 1)) | |
x = x.transpose(0, 1) | |
for layer in self.joint_layers: | |
x, _ = layer(x, self_attn_padding_mask=None) | |
return x | |
def classification_forward(self, x): | |
# x: B x T x C | |
return self.classifier(x) | |
class DiscriminativeNMTRerankerConfig(FairseqDataclass): | |
pretrained_model: str = field( | |
default="", metadata={"help": "pretrained model to load"} | |
) | |
sentence_rep: SENTENCE_REP_CHOICES = field( | |
default="head", | |
metadata={ | |
"help": "method to transform the output of the transformer stack to a sentence-level representation" | |
}, | |
) | |
dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) | |
attention_dropout: float = field( | |
default=0.0, metadata={"help": "dropout probability for attention weights"} | |
) | |
activation_dropout: float = field( | |
default=0.0, metadata={"help": "dropout probability after activation in FFN"} | |
) | |
classifier_dropout: float = field( | |
default=0.0, metadata={"help": "classifier dropout probability"} | |
) | |
embed_dim: int = field(default=768, metadata={"help": "embedding dimension"}) | |
ffn_embed_dim: int = field( | |
default=2048, metadata={"help": "embedding dimension for FFN"} | |
) | |
encoder_layers: int = field(default=12, metadata={"help": "num encoder layers"}) | |
attention_heads: int = field(default=8, metadata={"help": "num attention heads"}) | |
encoder_normalize_before: bool = field( | |
default=False, metadata={"help": "apply layernorm before each encoder block"} | |
) | |
apply_bert_init: bool = field( | |
default=False, metadata={"help": "use custom param initialization for BERT"} | |
) | |
activation_fn: ACTIVATION_FN_CHOICES = field( | |
default="relu", metadata={"help": "activation function to use"} | |
) | |
freeze_embeddings: bool = field( | |
default=False, metadata={"help": "freeze embeddings in the pretrained model"} | |
) | |
n_trans_layers_to_freeze: int = field( | |
default=0, | |
metadata={ | |
"help": "number of layers to freeze in the pretrained transformer model" | |
}, | |
) | |
# joint classfication | |
joint_classification: JOINT_CLASSIFICATION_CHOICES = field( | |
default="none", | |
metadata={"help": "method to compute joint features for classification"}, | |
) | |
num_joint_layers: int = field( | |
default=1, metadata={"help": "number of joint layers"} | |
) | |
joint_normalize_before: bool = field( | |
default=False, | |
metadata={"help": "apply layer norm on the input to the joint layer"}, | |
) | |
class DiscriminativeNMTReranker(BaseFairseqModel): | |
def build_model(cls, args, task): | |
model = BertRanker(args, task) | |
return DiscriminativeNMTReranker(args, model) | |
def __init__(self, args, model): | |
super().__init__() | |
self.model = model | |
self.sentence_rep = args.sentence_rep | |
self.joint_classification = args.joint_classification | |
def forward(self, src_tokens, src_lengths, **kwargs): | |
return self.model(src_tokens, src_lengths) | |
def sentence_forward(self, encoder_out, src_tokens): | |
return self.model.sentence_forward(encoder_out, src_tokens, self.sentence_rep) | |
def joint_forward(self, x): | |
return self.model.joint_forward(x) | |
def classification_forward(self, x): | |
return self.model.classification_forward(x) | |