OFA-Generic_Interface / utils /eval_utils.py
logicwong's picture
init
c9bb3f2
raw
history blame
13.3 kB
import string
import math
import json
from itertools import chain
import os
import torch
import torch.distributed as dist
from data import data_utils
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.bos, generator.eos}
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
def eval_caption(task, generator, models, sample, **kwargs):
transtab = str.maketrans({key: None for key in string.punctuation})
hypos = task.inference_step(generator, models, sample)
results = []
for i, sample_id in enumerate(sample["id"].tolist()):
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator)
results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()})
return results, None
def eval_vqa_gen(task, generator, models, sample, **kwargs):
if kwargs['beam_search_vqa_eval']:
hypos = task.inference_step(generator, models, sample, prefix_tokens=sample['prefix_tokens'])
results = []
for i, sample_id in enumerate(sample["id"].tolist()):
prefix_len = sample['prefix_tokens'][i].ne(1).sum().item()
detok_hypo_str = decode_fn(hypos[i][0]["tokens"][prefix_len:], task.tgt_dict, task.bpe, generator)
results.append({"question_id": int(sample_id), "answer": detok_hypo_str.strip()})
scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)]
return results, scores
encoder_out = models[0].encoder(
sample["net_input"]["src_tokens"],
src_lengths=sample["net_input"]["src_lengths"],
patch_images=sample["net_input"]["patch_images"],
patch_masks=sample["net_input"]["patch_masks"]
)
device = sample["net_input"]["src_tokens"].device
eos_item = torch.tensor([task.src_dict.eos()])
pad = task.src_dict.pad()
valid_result = []
for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list):
valid_size = len(valid_answers)
valid_tgt_items = [
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
]
valid_prev_items = [
torch.cat([torch.tensor(decoder_prompt), valid_answer])
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
]
valid_constraint_mask_items = [
torch.cat(
[torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask],
dim=0
)
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
]
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device)
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device)
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device)
new_encoder_out = {}
new_encoder_out["encoder_out"] = [
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
]
new_encoder_out["encoder_padding_mask"] = [
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
]
new_encoder_out["position_embeddings"] = [
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
]
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
scores = scores.sum(1)
scores = scores.view(-1, valid_size)
valid_result.append(scores)
valid_result = torch.cat(valid_result, dim=-1)
predicts = valid_result.argmax(1).tolist()
hyps = [task.index2ans[predict_index] for predict_index in predicts]
results = [{"question_id": int(id), "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
return results, scores
def eval_refcoco(task, generator, models, sample, **kwargs):
def _calculate_ap_score(hyps, refs, thresh=0.5):
interacts = torch.cat(
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
dim=1
)
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1])
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
interacts_w = interacts[:, 2] - interacts[:, 0]
interacts_h = interacts[:, 3] - interacts[:, 1]
area_interacts = interacts_w * interacts_h
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
gen_out = task.inference_step(generator, models, sample)
hyps = []
for i in range(len(gen_out)):
hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins)
hyps = torch.stack(hyps, dim=0)
hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
results = [
{"uniq_id": sample_id,
"box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]}
for i, sample_id in enumerate(sample["id"].tolist())
]
scores = _calculate_ap_score(hyps, sample['region_coords'].float())
return results, scores
def eval_snli_ve(task, generator, models, sample, **kwargs):
encoder_out = models[0].encoder(
sample["net_input"]["src_tokens"],
src_lengths=sample["net_input"]["src_lengths"],
patch_images=sample["net_input"]["patch_images"],
patch_masks=sample["net_input"]["patch_masks"]
)
device = sample["net_input"]["src_tokens"].device
eos_item = torch.tensor([task.src_dict.eos()])
pad = task.src_dict.pad()
valid_result = []
for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list):
valid_size = len(valid_answers)
valid_tgt_items = [
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
]
valid_prev_items = [
torch.cat([torch.tensor(decoder_prompt), valid_answer])
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
]
valid_constraint_mask_items = [
torch.cat(
[torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask],
dim=0
)
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
]
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device)
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device)
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device)
new_encoder_out = {}
new_encoder_out["encoder_out"] = [
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
]
new_encoder_out["encoder_padding_mask"] = [
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
]
new_encoder_out["position_embeddings"] = [
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
]
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
scores = scores.sum(1)
scores = scores.view(-1, valid_size)
valid_result.append(scores)
valid_result = torch.cat(valid_result, dim=-1)
predicts = valid_result.argmax(1).tolist()
hyps = [task.index2ans[predict_index] for predict_index in predicts]
results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
return results, scores
def eval_image_gen(task, generator, models, sample, **kwargs):
hypos, _ = task.inference_image(generator, sample, models)
tokens = sample['net_input']['src_tokens'][0].view(-1).tolist()
caption = task.bpe.decode(task.tgt_dict.string([token for token in tokens if token >= 4]))[
38:].replace('/', '')
text_similarity_score, indices = task.compute_text_similarity(hypos, caption,
sample['net_input']['src_tokens'].device)
results = []
for i, indice in enumerate(indices):
results.append({"sample_id": str(sample["id"][0]), "score": text_similarity_score[i], "image": hypos[indice]})
scores = [max(text_similarity_score).item()]
return results, scores
def eval_glue(task, generator, models, sample, **kwargs):
net_output = models[0](**sample["net_input"])
net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf)
last_token_ids = sample["net_input"]["prev_output_tokens"].ne(task.src_dict.pad()).sum(1, keepdim=True) - 1
logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2)))
logits = logits.squeeze(1)
predicts = logits.argmax(1).tolist()
hyps = [task.bpe.decode(task.src_dict[predict]).strip() for predict in predicts]
results = [{"hyp": hyp, "ref": ref_dict.keys()[0]} for hyp, ref_dict in zip(hyps, sample['ref_dict'])]
return results, None
def eval_step(task, generator, models, sample, **kwargs):
if task.cfg._name == 'caption':
return eval_caption(task, generator, models, sample, **kwargs)
elif task.cfg._name == 'vqa_gen':
return eval_vqa_gen(task, generator, models, sample, **kwargs)
elif task.cfg._name == 'refcoco':
return eval_refcoco(task, generator, models, sample, **kwargs)
elif task.cfg._name == 'snli_ve':
return eval_snli_ve(task, generator, models, sample, **kwargs)
elif task.cfg._name == 'image_gen':
return eval_image_gen(task, generator, models, sample, **kwargs)
elif task.cfg._name in {'cola', 'mnli', 'mrpc', 'qnli', 'qqp', 'rte', 'sst2'}:
return eval_glue(task, generator, models, sample, **kwargs)
else:
raise NotImplementedError
def merge_results(task, cfg, logger, score_cnt, score_sum, results):
if task.cfg._name == 'image_gen':
if cfg.distributed_training.distributed_world_size > 1:
dist.all_reduce(score_sum.data)
dist.all_reduce(score_cnt.data)
if score_cnt.item() > 0:
logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
))
else:
gather_results = None
if cfg.distributed_training.distributed_world_size > 1:
gather_results = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(gather_results, results)
dist.all_reduce(score_sum.data)
dist.all_reduce(score_cnt.data)
if score_cnt.item() > 0:
logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
))
if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset))
gather_results = list(chain(*gather_results)) if gather_results is not None else results
with open(output_path, 'w') as fw:
json.dump(gather_results, fw)