Spaces:
Running
on
Zero
Running
on
Zero
InvSR
/
src
/diffusers
/pipelines
/stable_diffusion_attend_and_excite
/pipeline_stable_diffusion_attend_and_excite.py
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import math | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from torch.nn import functional as F | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from ...image_processor import VaeImageProcessor | |
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin | |
from ...models import AutoencoderKL, UNet2DConditionModel | |
from ...models.attention_processor import Attention | |
from ...models.lora import adjust_lora_scale_text_encoder | |
from ...schedulers import KarrasDiffusionSchedulers | |
from ...utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from ..stable_diffusion import StableDiffusionPipelineOutput | |
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
logger = logging.get_logger(__name__) | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import StableDiffusionAttendAndExcitePipeline | |
>>> pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained( | |
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 | |
... ).to("cuda") | |
>>> prompt = "a cat and a frog" | |
>>> # use get_indices function to find out indices of the tokens you want to alter | |
>>> pipe.get_indices(prompt) | |
{0: '<|startoftext|>', 1: 'a</w>', 2: 'cat</w>', 3: 'and</w>', 4: 'a</w>', 5: 'frog</w>', 6: '<|endoftext|>'} | |
>>> token_indices = [2, 5] | |
>>> seed = 6141 | |
>>> generator = torch.Generator("cuda").manual_seed(seed) | |
>>> images = pipe( | |
... prompt=prompt, | |
... token_indices=token_indices, | |
... guidance_scale=7.5, | |
... generator=generator, | |
... num_inference_steps=50, | |
... max_iter_to_alter=25, | |
... ).images | |
>>> image = images[0] | |
>>> image.save(f"../images/{prompt}_{seed}.png") | |
``` | |
""" | |
class AttentionStore: | |
def get_empty_store(): | |
return {"down": [], "mid": [], "up": []} | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= 0 and is_cross: | |
if attn.shape[1] == np.prod(self.attn_res): | |
self.step_store[place_in_unet].append(attn) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers: | |
self.cur_att_layer = 0 | |
self.between_steps() | |
def between_steps(self): | |
self.attention_store = self.step_store | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = self.attention_store | |
return average_attention | |
def aggregate_attention(self, from_where: List[str]) -> torch.Tensor: | |
"""Aggregates the attention across the different layers and heads at the specified resolution.""" | |
out = [] | |
attention_maps = self.get_average_attention() | |
for location in from_where: | |
for item in attention_maps[location]: | |
cross_maps = item.reshape(-1, self.attn_res[0], self.attn_res[1], item.shape[-1]) | |
out.append(cross_maps) | |
out = torch.cat(out, dim=0) | |
out = out.sum(0) / out.shape[0] | |
return out | |
def reset(self): | |
self.cur_att_layer = 0 | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self, attn_res): | |
""" | |
Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion | |
process | |
""" | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
self.curr_step_index = 0 | |
self.attn_res = attn_res | |
class AttendExciteAttnProcessor: | |
def __init__(self, attnstore, place_in_unet): | |
super().__init__() | |
self.attnstore = attnstore | |
self.place_in_unet = place_in_unet | |
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
query = attn.to_q(hidden_states) | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
# only need to store attention maps during the Attend and Excite process | |
if attention_probs.requires_grad: | |
self.attnstore(attention_probs, is_cross, self.place_in_unet) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion and Attend-and-Excite. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
""" | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
_exclude_from_cpu_offload = ["safety_checker"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if self.text_encoder is not None: | |
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
indices, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
indices_is_list_ints = isinstance(indices, list) and isinstance(indices[0], int) | |
indices_is_list_list_ints = ( | |
isinstance(indices, list) and isinstance(indices[0], list) and isinstance(indices[0][0], int) | |
) | |
if not indices_is_list_ints and not indices_is_list_list_ints: | |
raise TypeError("`indices` must be a list of ints or a list of a list of ints") | |
if indices_is_list_ints: | |
indices_batch_size = 1 | |
elif indices_is_list_list_ints: | |
indices_batch_size = len(indices) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if indices_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"indices batch size must be same as prompt batch size. indices batch size: {indices_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def _compute_max_attention_per_index( | |
attention_maps: torch.Tensor, | |
indices: List[int], | |
) -> List[torch.Tensor]: | |
"""Computes the maximum attention value for each of the tokens we wish to alter.""" | |
attention_for_text = attention_maps[:, :, 1:-1] | |
attention_for_text *= 100 | |
attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1) | |
# Shift indices since we removed the first token | |
indices = [index - 1 for index in indices] | |
# Extract the maximum values | |
max_indices_list = [] | |
for i in indices: | |
image = attention_for_text[:, :, i] | |
smoothing = GaussianSmoothing().to(attention_maps.device) | |
input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect") | |
image = smoothing(input).squeeze(0).squeeze(0) | |
max_indices_list.append(image.max()) | |
return max_indices_list | |
def _aggregate_and_get_max_attention_per_token( | |
self, | |
indices: List[int], | |
): | |
"""Aggregates the attention for each token and computes the max activation value for each token to alter.""" | |
attention_maps = self.attention_store.aggregate_attention( | |
from_where=("up", "down", "mid"), | |
) | |
max_attention_per_index = self._compute_max_attention_per_index( | |
attention_maps=attention_maps, | |
indices=indices, | |
) | |
return max_attention_per_index | |
def _compute_loss(max_attention_per_index: List[torch.Tensor]) -> torch.Tensor: | |
"""Computes the attend-and-excite loss using the maximum attention value for each token.""" | |
losses = [max(0, 1.0 - curr_max) for curr_max in max_attention_per_index] | |
loss = max(losses) | |
return loss | |
def _update_latent(latents: torch.Tensor, loss: torch.Tensor, step_size: float) -> torch.Tensor: | |
"""Update the latent according to the computed loss.""" | |
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents], retain_graph=True)[0] | |
latents = latents - step_size * grad_cond | |
return latents | |
def _perform_iterative_refinement_step( | |
self, | |
latents: torch.Tensor, | |
indices: List[int], | |
loss: torch.Tensor, | |
threshold: float, | |
text_embeddings: torch.Tensor, | |
step_size: float, | |
t: int, | |
max_refinement_steps: int = 20, | |
): | |
""" | |
Performs the iterative latent refinement introduced in the paper. Here, we continuously update the latent code | |
according to our loss objective until the given threshold is reached for all tokens. | |
""" | |
iteration = 0 | |
target_loss = max(0, 1.0 - threshold) | |
while loss > target_loss: | |
iteration += 1 | |
latents = latents.clone().detach().requires_grad_(True) | |
self.unet(latents, t, encoder_hidden_states=text_embeddings).sample | |
self.unet.zero_grad() | |
# Get max activation value for each subject token | |
max_attention_per_index = self._aggregate_and_get_max_attention_per_token( | |
indices=indices, | |
) | |
loss = self._compute_loss(max_attention_per_index) | |
if loss != 0: | |
latents = self._update_latent(latents, loss, step_size) | |
logger.info(f"\t Try {iteration}. loss: {loss}") | |
if iteration >= max_refinement_steps: | |
logger.info(f"\t Exceeded max number of iterations ({max_refinement_steps})! ") | |
break | |
# Run one more time but don't compute gradients and update the latents. | |
# We just need to compute the new loss - the grad update will occur below | |
latents = latents.clone().detach().requires_grad_(True) | |
_ = self.unet(latents, t, encoder_hidden_states=text_embeddings).sample | |
self.unet.zero_grad() | |
# Get max activation value for each subject token | |
max_attention_per_index = self._aggregate_and_get_max_attention_per_token( | |
indices=indices, | |
) | |
loss = self._compute_loss(max_attention_per_index) | |
logger.info(f"\t Finished with loss of: {loss}") | |
return loss, latents, max_attention_per_index | |
def register_attention_control(self): | |
attn_procs = {} | |
cross_att_count = 0 | |
for name in self.unet.attn_processors.keys(): | |
if name.startswith("mid_block"): | |
place_in_unet = "mid" | |
elif name.startswith("up_blocks"): | |
place_in_unet = "up" | |
elif name.startswith("down_blocks"): | |
place_in_unet = "down" | |
else: | |
continue | |
cross_att_count += 1 | |
attn_procs[name] = AttendExciteAttnProcessor(attnstore=self.attention_store, place_in_unet=place_in_unet) | |
self.unet.set_attn_processor(attn_procs) | |
self.attention_store.num_att_layers = cross_att_count | |
def get_indices(self, prompt: str) -> Dict[str, int]: | |
"""Utility function to list the indices of the tokens you wish to alte""" | |
ids = self.tokenizer(prompt).input_ids | |
indices = {i: tok for tok, i in zip(self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)))} | |
return indices | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
token_indices: Union[List[int], List[List[int]]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: int = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
max_iter_to_alter: int = 25, | |
thresholds: dict = {0: 0.05, 10: 0.5, 20: 0.8}, | |
scale_factor: int = 20, | |
attn_res: Optional[Tuple[int]] = (16, 16), | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
token_indices (`List[int]`): | |
The token indices to alter with attend-and-excite. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
max_iter_to_alter (`int`, *optional*, defaults to `25`): | |
Number of denoising steps to apply attend-and-excite. The `max_iter_to_alter` denoising steps are when | |
attend-and-excite is applied. For example, if `max_iter_to_alter` is `25` and there are a total of `30` | |
denoising steps, the first `25` denoising steps applies attend-and-excite and the last `5` will not. | |
thresholds (`dict`, *optional*, defaults to `{0: 0.05, 10: 0.5, 20: 0.8}`): | |
Dictionary defining the iterations and desired thresholds to apply iterative latent refinement in. | |
scale_factor (`int`, *optional*, default to 20): | |
Scale factor to control the step size of each attend-and-excite update. | |
attn_res (`tuple`, *optional*, default computed from width and height): | |
The 2D resolution of the semantic attention map. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
token_indices, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
clip_skip=clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
if attn_res is None: | |
attn_res = int(np.ceil(width / 32)), int(np.ceil(height / 32)) | |
self.attention_store = AttentionStore(attn_res) | |
original_attn_proc = self.unet.attn_processors | |
self.register_attention_control() | |
# default config for step size from original repo | |
scale_range = np.linspace(1.0, 0.5, len(self.scheduler.timesteps)) | |
step_size = scale_factor * np.sqrt(scale_range) | |
text_embeddings = ( | |
prompt_embeds[batch_size * num_images_per_prompt :] if do_classifier_free_guidance else prompt_embeds | |
) | |
if isinstance(token_indices[0], int): | |
token_indices = [token_indices] | |
indices = [] | |
for ind in token_indices: | |
indices = indices + [ind] * num_images_per_prompt | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Attend and excite process | |
with torch.enable_grad(): | |
latents = latents.clone().detach().requires_grad_(True) | |
updated_latents = [] | |
for latent, index, text_embedding in zip(latents, indices, text_embeddings): | |
# Forward pass of denoising with text conditioning | |
latent = latent.unsqueeze(0) | |
text_embedding = text_embedding.unsqueeze(0) | |
self.unet( | |
latent, | |
t, | |
encoder_hidden_states=text_embedding, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
self.unet.zero_grad() | |
# Get max activation value for each subject token | |
max_attention_per_index = self._aggregate_and_get_max_attention_per_token( | |
indices=index, | |
) | |
loss = self._compute_loss(max_attention_per_index=max_attention_per_index) | |
# If this is an iterative refinement step, verify we have reached the desired threshold for all | |
if i in thresholds.keys() and loss > 1.0 - thresholds[i]: | |
loss, latent, max_attention_per_index = self._perform_iterative_refinement_step( | |
latents=latent, | |
indices=index, | |
loss=loss, | |
threshold=thresholds[i], | |
text_embeddings=text_embedding, | |
step_size=step_size[i], | |
t=t, | |
) | |
# Perform gradient update | |
if i < max_iter_to_alter: | |
if loss != 0: | |
latent = self._update_latent( | |
latents=latent, | |
loss=loss, | |
step_size=step_size[i], | |
) | |
logger.info(f"Iteration {i} | Loss: {loss:0.4f}") | |
updated_latents.append(latent) | |
latents = torch.cat(updated_latents, dim=0) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# 8. Post-processing | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
self.maybe_free_model_hooks() | |
# make sure to set the original attention processors back | |
self.unet.set_attn_processor(original_attn_proc) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
class GaussianSmoothing(torch.nn.Module): | |
""" | |
Arguments: | |
Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input | |
using a depthwise convolution. | |
channels (int, sequence): Number of channels of the input tensors. Output will | |
have this number of channels as well. | |
kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the | |
gaussian kernel. dim (int, optional): The number of dimensions of the data. | |
Default value is 2 (spatial). | |
""" | |
# channels=1, kernel_size=kernel_size, sigma=sigma, dim=2 | |
def __init__( | |
self, | |
channels: int = 1, | |
kernel_size: int = 3, | |
sigma: float = 0.5, | |
dim: int = 2, | |
): | |
super().__init__() | |
if isinstance(kernel_size, int): | |
kernel_size = [kernel_size] * dim | |
if isinstance(sigma, float): | |
sigma = [sigma] * dim | |
# The gaussian kernel is the product of the | |
# gaussian function of each dimension. | |
kernel = 1 | |
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) | |
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
mean = (size - 1) / 2 | |
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) | |
# Make sure sum of values in gaussian kernel equals 1. | |
kernel = kernel / torch.sum(kernel) | |
# Reshape to depthwise convolutional weight | |
kernel = kernel.view(1, 1, *kernel.size()) | |
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
self.register_buffer("weight", kernel) | |
self.groups = channels | |
if dim == 1: | |
self.conv = F.conv1d | |
elif dim == 2: | |
self.conv = F.conv2d | |
elif dim == 3: | |
self.conv = F.conv3d | |
else: | |
raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) | |
def forward(self, input): | |
""" | |
Arguments: | |
Apply gaussian filter to input. | |
input (torch.Tensor): Input to apply gaussian filter on. | |
Returns: | |
filtered (torch.Tensor): Filtered output. | |
""" | |
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups) | |