Spaces:
Running
on
Zero
Running
on
Zero
''' | |
# -------------------------------------------------------------------------------- | |
# Color fixed script from Li Yi (https://github.com/pkuliyi2015/sd-webui-stablesr/blob/master/srmodule/colorfix.py) | |
# -------------------------------------------------------------------------------- | |
''' | |
import torch | |
from PIL import Image | |
from torch import Tensor | |
from torch.nn import functional as F | |
from torchvision.transforms import ToTensor, ToPILImage | |
from .util_image import rgb2ycbcrTorch, ycbcr2rgbTorch | |
def adain_color_fix(target: Image, source: Image): | |
# Convert images to tensors | |
to_tensor = ToTensor() | |
target_tensor = to_tensor(target).unsqueeze(0) | |
source_tensor = to_tensor(source).unsqueeze(0) | |
# Apply adaptive instance normalization | |
result_tensor = adaptive_instance_normalization(target_tensor, source_tensor) | |
# Convert tensor back to image | |
to_image = ToPILImage() | |
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0)) | |
return result_image | |
def wavelet_color_fix(target: Image, source: Image): | |
# Convert images to tensors | |
to_tensor = ToTensor() | |
target_tensor = to_tensor(target).unsqueeze(0) | |
source_tensor = to_tensor(source).unsqueeze(0) | |
# Apply wavelet reconstruction | |
result_tensor = wavelet_reconstruction(target_tensor, source_tensor) | |
# Convert tensor back to image | |
to_image = ToPILImage() | |
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0)) | |
return result_image | |
def calc_mean_std(feat: Tensor, eps=1e-5): | |
"""Calculate mean and std for adaptive_instance_normalization. | |
Args: | |
feat (Tensor): 4D tensor. | |
eps (float): A small value added to the variance to avoid | |
divide-by-zero. Default: 1e-5. | |
""" | |
size = feat.size() | |
assert len(size) == 4, 'The input feature should be 4D tensor.' | |
b, c = size[:2] | |
feat_var = feat.reshape(b, c, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().reshape(b, c, 1, 1) | |
feat_mean = feat.reshape(b, c, -1).mean(dim=2).reshape(b, c, 1, 1) | |
return feat_mean, feat_std | |
def adaptive_instance_normalization(content_feat:Tensor, style_feat:Tensor): | |
"""Adaptive instance normalization. | |
Adjust the reference features to have the similar color and illuminations | |
as those in the degradate features. | |
Args: | |
content_feat (Tensor): The reference feature. | |
style_feat (Tensor): The degradate features. | |
""" | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
def wavelet_blur(image: Tensor, radius: int): | |
""" | |
Apply wavelet blur to the input tensor. | |
""" | |
# input shape: (1, 3, H, W) | |
# convolution kernel | |
kernel_vals = [ | |
[0.0625, 0.125, 0.0625], | |
[0.125, 0.25, 0.125], | |
[0.0625, 0.125, 0.0625], | |
] | |
kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device) | |
# add channel dimensions to the kernel to make it a 4D tensor | |
kernel = kernel[None, None] | |
# repeat the kernel across all input channels | |
kernel = kernel.repeat(3, 1, 1, 1) | |
image = F.pad(image, (radius, radius, radius, radius), mode='replicate') | |
# apply convolution | |
output = F.conv2d(image, kernel, groups=3, dilation=radius) | |
return output | |
def wavelet_decomposition(image: Tensor, levels=5): | |
""" | |
Apply wavelet decomposition to the input tensor. | |
This function only returns the low frequency & the high frequency. | |
""" | |
high_freq = torch.zeros_like(image) | |
for i in range(levels): | |
radius = 2 ** i | |
low_freq = wavelet_blur(image, radius) | |
high_freq += (image - low_freq) | |
image = low_freq | |
return high_freq, low_freq | |
def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor): | |
""" | |
Apply wavelet decomposition, so that the content will have the same color as the style. | |
""" | |
# calculate the wavelet decomposition of the content feature | |
content_high_freq, content_low_freq = wavelet_decomposition(content_feat) | |
del content_low_freq | |
# calculate the wavelet decomposition of the style feature | |
style_high_freq, style_low_freq = wavelet_decomposition(style_feat) | |
del style_high_freq | |
# reconstruct the content feature with the style's high frequency | |
return content_high_freq + style_low_freq | |
def ycbcr_color_replace(content_feat:Tensor, style_feat:Tensor): | |
""" | |
Apply ycbcr decomposition, so that the content will have the same color as the style. | |
""" | |
content_y = rgb2ycbcrTorch(content_feat, only_y=True) | |
style_ycbcr = rgb2ycbcrTorch(style_feat, only_y=False) | |
target_ycbcr = torch.cat([content_y, style_ycbcr[:, 1:,]], dim=1) | |
target_rgb = ycbcr2rgbTorch(target_ycbcr) | |
return target_rgb | |