Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 UC Berkeley Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput | |
from ..utils.torch_utils import randn_tensor | |
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin | |
class DDPMSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.Tensor | |
pred_original_sample: Optional[torch.Tensor] = None | |
def betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
max_beta=0.999, | |
alpha_transform_type="cosine", | |
): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
Choose from `cosine` or `exp` | |
Returns: | |
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
if alpha_transform_type == "cosine": | |
def alpha_bar_fn(t): | |
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
elif alpha_transform_type == "exp": | |
def alpha_bar_fn(t): | |
return math.exp(t * -12.0) | |
else: | |
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
return torch.tensor(betas, dtype=torch.float32) | |
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr | |
def rescale_zero_terminal_snr(betas): | |
""" | |
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) | |
Args: | |
betas (`torch.Tensor`): | |
the betas that the scheduler is being initialized with. | |
Returns: | |
`torch.Tensor`: rescaled betas with zero terminal SNR | |
""" | |
# Convert betas to alphas_bar_sqrt | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
alphas_bar_sqrt = alphas_cumprod.sqrt() | |
# Store old values. | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
# Shift so the last timestep is zero. | |
alphas_bar_sqrt -= alphas_bar_sqrt_T | |
# Scale so the first timestep is back to the old value. | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
# Convert alphas_bar_sqrt to betas | |
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod | |
alphas = torch.cat([alphas_bar[0:1], alphas]) | |
betas = 1 - alphas | |
return betas | |
class DDPMScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
`DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
beta_start (`float`, defaults to 0.0001): | |
The starting `beta` value of inference. | |
beta_end (`float`, defaults to 0.02): | |
The final `beta` value. | |
beta_schedule (`str`, defaults to `"linear"`): | |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
trained_betas (`np.ndarray`, *optional*): | |
An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`. | |
variance_type (`str`, defaults to `"fixed_small"`): | |
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, | |
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`. | |
clip_sample (`bool`, defaults to `True`): | |
Clip the predicted sample for numerical stability. | |
clip_sample_range (`float`, defaults to 1.0): | |
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. | |
prediction_type (`str`, defaults to `epsilon`, *optional*): | |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
Video](https://imagen.research.google/video/paper.pdf) paper). | |
thresholding (`bool`, defaults to `False`): | |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such | |
as Stable Diffusion. | |
dynamic_thresholding_ratio (`float`, defaults to 0.995): | |
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | |
sample_max_value (`float`, defaults to 1.0): | |
The threshold value for dynamic thresholding. Valid only when `thresholding=True`. | |
timestep_spacing (`str`, defaults to `"leading"`): | |
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
steps_offset (`int`, defaults to 0): | |
An offset added to the inference steps, as required by some model families. | |
rescale_betas_zero_snr (`bool`, defaults to `False`): | |
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and | |
dark samples instead of limiting it to samples with medium brightness. Loosely related to | |
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). | |
""" | |
_compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
variance_type: str = "fixed_small", | |
clip_sample: bool = True, | |
prediction_type: str = "epsilon", | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
clip_sample_range: float = 1.0, | |
sample_max_value: float = 1.0, | |
timestep_spacing: str = "leading", | |
steps_offset: int = 0, | |
rescale_betas_zero_snr: bool = False, | |
): | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
elif beta_schedule == "sigmoid": | |
# GeoDiff sigmoid schedule | |
betas = torch.linspace(-6, 6, num_train_timesteps) | |
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start | |
else: | |
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | |
# Rescale for zero SNR | |
if rescale_betas_zero_snr: | |
self.betas = rescale_zero_terminal_snr(self.betas) | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
self.one = torch.tensor(1.0) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# setable values | |
self.custom_timesteps = False | |
self.num_inference_steps = None | |
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) | |
self.variance_type = variance_type | |
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.Tensor`): | |
The input sample. | |
timestep (`int`, *optional*): | |
The current timestep in the diffusion chain. | |
Returns: | |
`torch.Tensor`: | |
A scaled input sample. | |
""" | |
return sample | |
def set_timesteps( | |
self, | |
num_inference_steps: Optional[int] = None, | |
device: Union[str, torch.device] = None, | |
timesteps: Optional[List[int]] = None, | |
): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
`timesteps` must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed, | |
`num_inference_steps` must be `None`. | |
""" | |
if num_inference_steps is not None and timesteps is not None: | |
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.") | |
if timesteps is not None: | |
for i in range(1, len(timesteps)): | |
if timesteps[i] >= timesteps[i - 1]: | |
raise ValueError("`custom_timesteps` must be in descending order.") | |
if timesteps[0] >= self.config.num_train_timesteps: | |
raise ValueError( | |
f"`timesteps` must start before `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps}." | |
) | |
timesteps = np.array(timesteps, dtype=np.int64) | |
self.custom_timesteps = True | |
else: | |
if num_inference_steps > self.config.num_train_timesteps: | |
raise ValueError( | |
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
f" maximal {self.config.num_train_timesteps} timesteps." | |
) | |
self.num_inference_steps = num_inference_steps | |
self.custom_timesteps = False | |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 | |
if self.config.timestep_spacing == "linspace": | |
timesteps = ( | |
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) | |
.round()[::-1] | |
.copy() | |
.astype(np.int64) | |
) | |
elif self.config.timestep_spacing == "leading": | |
step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) | |
timesteps += self.config.steps_offset | |
elif self.config.timestep_spacing == "trailing": | |
step_ratio = self.config.num_train_timesteps / self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) | |
timesteps -= 1 | |
else: | |
raise ValueError( | |
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." | |
) | |
self.timesteps = torch.from_numpy(timesteps).to(device) | |
def _get_variance(self, t, predicted_variance=None, variance_type=None): | |
prev_t = self.previous_timestep(t) | |
alpha_prod_t = self.alphas_cumprod[t] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one | |
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev | |
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) | |
# and sample from it to get previous sample | |
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample | |
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t | |
# we always take the log of variance, so clamp it to ensure it's not 0 | |
variance = torch.clamp(variance, min=1e-20) | |
if variance_type is None: | |
variance_type = self.config.variance_type | |
# hacks - were probably added for training stability | |
if variance_type == "fixed_small": | |
variance = variance | |
# for rl-diffuser https://arxiv.org/abs/2205.09991 | |
elif variance_type == "fixed_small_log": | |
variance = torch.log(variance) | |
variance = torch.exp(0.5 * variance) | |
elif variance_type == "fixed_large": | |
variance = current_beta_t | |
elif variance_type == "fixed_large_log": | |
# Glide max_log | |
variance = torch.log(current_beta_t) | |
elif variance_type == "learned": | |
return predicted_variance | |
elif variance_type == "learned_range": | |
min_log = torch.log(variance) | |
max_log = torch.log(current_beta_t) | |
frac = (predicted_variance + 1) / 2 | |
variance = frac * max_log + (1 - frac) * min_log | |
return variance | |
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: | |
""" | |
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
https://arxiv.org/abs/2205.11487 | |
""" | |
dtype = sample.dtype | |
batch_size, channels, *remaining_dims = sample.shape | |
if dtype not in (torch.float32, torch.float64): | |
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half | |
# Flatten sample for doing quantile calculation along each image | |
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) | |
abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
s = torch.clamp( | |
s, min=1, max=self.config.sample_max_value | |
) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" | |
sample = sample.reshape(batch_size, channels, *remaining_dims) | |
sample = sample.to(dtype) | |
return sample | |
def step( | |
self, | |
model_output: torch.Tensor, | |
timestep: int, | |
sample: torch.Tensor, | |
generator=None, | |
return_dict: bool = True, | |
) -> Union[DDPMSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.Tensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.Tensor`): | |
A current instance of a sample created by the diffusion process. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
t = timestep | |
prev_t = self.previous_timestep(t) | |
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: | |
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) | |
else: | |
predicted_variance = None | |
# 1. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[t] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one | |
beta_prod_t = 1 - alpha_prod_t | |
beta_prod_t_prev = 1 - alpha_prod_t_prev | |
current_alpha_t = alpha_prod_t / alpha_prod_t_prev | |
current_beta_t = 1 - current_alpha_t | |
# 2. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
if self.config.prediction_type == "epsilon": | |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
elif self.config.prediction_type == "sample": | |
pred_original_sample = model_output | |
elif self.config.prediction_type == "v_prediction": | |
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" | |
" `v_prediction` for the DDPMScheduler." | |
) | |
# 3. Clip or threshold "predicted x_0" | |
if self.config.thresholding: | |
pred_original_sample = self._threshold_sample(pred_original_sample) | |
elif self.config.clip_sample: | |
pred_original_sample = pred_original_sample.clamp( | |
-self.config.clip_sample_range, self.config.clip_sample_range | |
) | |
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t | |
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t | |
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t | |
# 5. Compute predicted previous sample µ_t | |
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample | |
# 6. Add noise | |
variance = 0 | |
if t > 0: | |
device = model_output.device | |
variance_noise = randn_tensor( | |
model_output.shape, generator=generator, device=device, dtype=model_output.dtype | |
) | |
if self.variance_type == "fixed_small_log": | |
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise | |
elif self.variance_type == "learned_range": | |
variance = self._get_variance(t, predicted_variance=predicted_variance) | |
variance = torch.exp(0.5 * variance) * variance_noise | |
else: | |
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise | |
pred_prev_sample = pred_prev_sample + variance | |
if not return_dict: | |
return (pred_prev_sample,) | |
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) | |
def add_noise( | |
self, | |
original_samples: torch.Tensor, | |
noise: torch.Tensor, | |
timesteps: torch.IntTensor, | |
) -> torch.Tensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement | |
# for the subsequent add_noise calls | |
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) | |
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) | |
timesteps = timesteps.to(original_samples.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as sample | |
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) | |
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) | |
timesteps = timesteps.to(sample.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(sample.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | |
return velocity | |
def __len__(self): | |
return self.config.num_train_timesteps | |
def previous_timestep(self, timestep): | |
if self.custom_timesteps: | |
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0] | |
if index == self.timesteps.shape[0] - 1: | |
prev_t = torch.tensor(-1) | |
else: | |
prev_t = self.timesteps[index + 1] | |
else: | |
num_inference_steps = ( | |
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps | |
) | |
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps | |
return prev_t | |