InvSR / src /diffusers /models /transformers /lumina_nextdit2d.py
OAOA's picture
first commit
bfa59ab
raw
history blame
14.4 kB
# Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ..attention import LuminaFeedForward
from ..attention_processor import Attention, LuminaAttnProcessor2_0
from ..embeddings import (
LuminaCombinedTimestepCaptionEmbedding,
LuminaPatchEmbed,
)
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LuminaNextDiTBlock(nn.Module):
"""
A LuminaNextDiTBlock for LuminaNextDiT2DModel.
Parameters:
dim (`int`): Embedding dimension of the input features.
num_attention_heads (`int`): Number of attention heads.
num_kv_heads (`int`):
Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
multiple_of (`int`): The number of multiple of ffn layer.
ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension.
norm_eps (`float`): The eps for norm layer.
qk_norm (`bool`): normalization for query and key.
cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
norm_elementwise_affine (`bool`, *optional*, defaults to True),
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
num_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
cross_attention_dim: int,
norm_elementwise_affine: bool = True,
) -> None:
super().__init__()
self.head_dim = dim // num_attention_heads
self.gate = nn.Parameter(torch.zeros([num_attention_heads]))
# Self-attention
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
qk_norm="layer_norm_across_heads" if qk_norm else None,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=LuminaAttnProcessor2_0(),
)
self.attn1.to_out = nn.Identity()
# Cross-attention
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
qk_norm="layer_norm_across_heads" if qk_norm else None,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=LuminaAttnProcessor2_0(),
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.norm1 = LuminaRMSNormZero(
embedding_dim=dim,
norm_eps=norm_eps,
norm_elementwise_affine=norm_elementwise_affine,
)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_mask: torch.Tensor,
temb: torch.Tensor,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
"""
Perform a forward pass through the LuminaNextDiTBlock.
Parameters:
hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
"""
residual = hidden_states
# Self-attention
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
self_attn_output = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
query_rotary_emb=image_rotary_emb,
key_rotary_emb=image_rotary_emb,
**cross_attention_kwargs,
)
# Cross-attention
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
cross_attn_output = self.attn2(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=encoder_mask,
query_rotary_emb=image_rotary_emb,
key_rotary_emb=None,
**cross_attention_kwargs,
)
cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
mixed_attn_output = self_attn_output + cross_attn_output
mixed_attn_output = mixed_attn_output.flatten(-2)
# linear proj
hidden_states = self.attn2.to_out[0](mixed_attn_output)
hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
return hidden_states
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
"""
LuminaNextDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Parameters:
sample_size (`int`): The width of the latent images. This is fixed during training since
it is used to learn a number of position embeddings.
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
in_channels (`int`, *optional*, defaults to 4):
The number of input channels for the model. Typically, this matches the number of channels in the input
images.
hidden_size (`int`, *optional*, defaults to 4096):
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
hidden representations.
num_layers (`int`, *optional*, default to 32):
The number of layers in the model. This defines the depth of the neural network.
num_attention_heads (`int`, *optional*, defaults to 32):
The number of attention heads in each attention layer. This parameter specifies how many separate attention
mechanisms are used.
num_kv_heads (`int`, *optional*, defaults to 8):
The number of key-value heads in the attention mechanism, if different from the number of attention heads.
If None, it defaults to num_attention_heads.
multiple_of (`int`, *optional*, defaults to 256):
A factor that the hidden size should be a multiple of. This can help optimize certain hardware
configurations.
ffn_dim_multiplier (`float`, *optional*):
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
the model configuration.
norm_eps (`float`, *optional*, defaults to 1e-5):
A small value added to the denominator for numerical stability in normalization layers.
learn_sigma (`bool`, *optional*, defaults to True):
Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
predictions.
qk_norm (`bool`, *optional*, defaults to True):
Indicates if the queries and keys in the attention mechanism should be normalized.
cross_attention_dim (`int`, *optional*, defaults to 2048):
The dimensionality of the text embeddings. This parameter defines the size of the text representations used
in the model.
scaling_factor (`float`, *optional*, defaults to 1.0):
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
overall scale of the model's operations.
"""
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: Optional[int] = 2,
in_channels: Optional[int] = 4,
hidden_size: Optional[int] = 2304,
num_layers: Optional[int] = 32,
num_attention_heads: Optional[int] = 32,
num_kv_heads: Optional[int] = None,
multiple_of: Optional[int] = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: Optional[float] = 1e-5,
learn_sigma: Optional[bool] = True,
qk_norm: Optional[bool] = True,
cross_attention_dim: Optional[int] = 2048,
scaling_factor: Optional[float] = 1.0,
) -> None:
super().__init__()
self.sample_size = sample_size
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.head_dim = hidden_size // num_attention_heads
self.scaling_factor = scaling_factor
self.patch_embedder = LuminaPatchEmbed(
patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
)
self.pad_token = nn.Parameter(torch.empty(hidden_size))
self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
)
self.layers = nn.ModuleList(
[
LuminaNextDiTBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
cross_attention_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
bias=True,
out_dim=patch_size * patch_size * self.out_channels,
)
# self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)
assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict=True,
) -> torch.Tensor:
"""
Forward pass of LuminaNextDiT.
Parameters:
hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
"""
hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
image_rotary_emb = image_rotary_emb.to(hidden_states.device)
temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask)
encoder_mask = encoder_mask.bool()
for layer in self.layers:
hidden_states = layer(
hidden_states,
mask,
image_rotary_emb,
encoder_hidden_states,
encoder_mask,
temb=temb,
cross_attention_kwargs=cross_attention_kwargs,
)
hidden_states = self.norm_out(hidden_states, temb)
# unpatchify
height_tokens = width_tokens = self.patch_size
height, width = img_size[0]
batch_size = hidden_states.size(0)
sequence_length = (height // height_tokens) * (width // width_tokens)
hidden_states = hidden_states[:, :sequence_length].view(
batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
)
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)