Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import re | |
import sys | |
import tempfile | |
import traceback | |
import warnings | |
from pathlib import Path | |
from typing import Dict, List, Optional, Union | |
from uuid import uuid4 | |
from huggingface_hub import ( | |
ModelCard, | |
ModelCardData, | |
create_repo, | |
hf_hub_download, | |
model_info, | |
snapshot_download, | |
upload_folder, | |
) | |
from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE | |
from huggingface_hub.file_download import REGEX_COMMIT_HASH | |
from huggingface_hub.utils import ( | |
EntryNotFoundError, | |
RepositoryNotFoundError, | |
RevisionNotFoundError, | |
is_jinja_available, | |
validate_hf_hub_args, | |
) | |
from packaging import version | |
from requests import HTTPError | |
from .. import __version__ | |
from .constants import ( | |
DEPRECATED_REVISION_ARGS, | |
HUGGINGFACE_CO_RESOLVE_ENDPOINT, | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
) | |
from .import_utils import ( | |
ENV_VARS_TRUE_VALUES, | |
_flax_version, | |
_jax_version, | |
_onnxruntime_version, | |
_torch_version, | |
is_flax_available, | |
is_onnx_available, | |
is_torch_available, | |
) | |
from .logging import get_logger | |
logger = get_logger(__name__) | |
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md" | |
SESSION_ID = uuid4().hex | |
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: | |
""" | |
Formats a user-agent string with basic info about a request. | |
""" | |
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" | |
if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE: | |
return ua + "; telemetry/off" | |
if is_torch_available(): | |
ua += f"; torch/{_torch_version}" | |
if is_flax_available(): | |
ua += f"; jax/{_jax_version}" | |
ua += f"; flax/{_flax_version}" | |
if is_onnx_available(): | |
ua += f"; onnxruntime/{_onnxruntime_version}" | |
# CI will set this value to True | |
if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: | |
ua += "; is_ci/true" | |
if isinstance(user_agent, dict): | |
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) | |
elif isinstance(user_agent, str): | |
ua += "; " + user_agent | |
return ua | |
def load_or_create_model_card( | |
repo_id_or_path: str = None, | |
token: Optional[str] = None, | |
is_pipeline: bool = False, | |
from_training: bool = False, | |
model_description: Optional[str] = None, | |
base_model: str = None, | |
prompt: Optional[str] = None, | |
license: Optional[str] = None, | |
widget: Optional[List[dict]] = None, | |
inference: Optional[bool] = None, | |
) -> ModelCard: | |
""" | |
Loads or creates a model card. | |
Args: | |
repo_id_or_path (`str`): | |
The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card. | |
token (`str`, *optional*): | |
Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more | |
details. | |
is_pipeline (`bool`): | |
Boolean to indicate if we're adding tag to a [`DiffusionPipeline`]. | |
from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script. | |
model_description (`str`, *optional*): Model description to add to the model card. Helpful when using | |
`load_or_create_model_card` from a training script. | |
base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful | |
for DreamBooth-like training. | |
prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training. | |
license: (`str`, *optional*): License of the output artifact. Helpful when using | |
`load_or_create_model_card` from a training script. | |
widget (`List[dict]`, *optional*): Widget to accompany a gallery template. | |
inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using | |
`load_or_create_model_card` from a training script. | |
""" | |
if not is_jinja_available(): | |
raise ValueError( | |
"Modelcard rendering is based on Jinja templates." | |
" Please make sure to have `jinja` installed before using `load_or_create_model_card`." | |
" To install it, please run `pip install Jinja2`." | |
) | |
try: | |
# Check if the model card is present on the remote repo | |
model_card = ModelCard.load(repo_id_or_path, token=token) | |
except (EntryNotFoundError, RepositoryNotFoundError): | |
# Otherwise create a model card from template | |
if from_training: | |
model_card = ModelCard.from_template( | |
card_data=ModelCardData( # Card metadata object that will be converted to YAML block | |
license=license, | |
library_name="diffusers", | |
inference=inference, | |
base_model=base_model, | |
instance_prompt=prompt, | |
widget=widget, | |
), | |
template_path=MODEL_CARD_TEMPLATE_PATH, | |
model_description=model_description, | |
) | |
else: | |
card_data = ModelCardData() | |
component = "pipeline" if is_pipeline else "model" | |
if model_description is None: | |
model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated." | |
model_card = ModelCard.from_template(card_data, model_description=model_description) | |
return model_card | |
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard: | |
"""Populates the `model_card` with library name and optional tags.""" | |
if model_card.data.library_name is None: | |
model_card.data.library_name = "diffusers" | |
if tags is not None: | |
if isinstance(tags, str): | |
tags = [tags] | |
if model_card.data.tags is None: | |
model_card.data.tags = [] | |
for tag in tags: | |
model_card.data.tags.append(tag) | |
return model_card | |
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None): | |
""" | |
Extracts the commit hash from a resolved filename toward a cache file. | |
""" | |
if resolved_file is None or commit_hash is not None: | |
return commit_hash | |
resolved_file = str(Path(resolved_file).as_posix()) | |
search = re.search(r"snapshots/([^/]+)/", resolved_file) | |
if search is None: | |
return None | |
commit_hash = search.groups()[0] | |
return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None | |
# Old default cache path, potentially to be migrated. | |
# This logic was more or less taken from `transformers`, with the following differences: | |
# - Diffusers doesn't use custom environment variables to specify the cache path. | |
# - There is no need to migrate the cache format, just move the files to the new location. | |
hf_cache_home = os.path.expanduser( | |
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) | |
) | |
old_diffusers_cache = os.path.join(hf_cache_home, "diffusers") | |
def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None: | |
if new_cache_dir is None: | |
new_cache_dir = HF_HUB_CACHE | |
if old_cache_dir is None: | |
old_cache_dir = old_diffusers_cache | |
old_cache_dir = Path(old_cache_dir).expanduser() | |
new_cache_dir = Path(new_cache_dir).expanduser() | |
for old_blob_path in old_cache_dir.glob("**/blobs/*"): | |
if old_blob_path.is_file() and not old_blob_path.is_symlink(): | |
new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir) | |
new_blob_path.parent.mkdir(parents=True, exist_ok=True) | |
os.replace(old_blob_path, new_blob_path) | |
try: | |
os.symlink(new_blob_path, old_blob_path) | |
except OSError: | |
logger.warning( | |
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." | |
) | |
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used). | |
cache_version_file = os.path.join(HF_HUB_CACHE, "version_diffusers_cache.txt") | |
if not os.path.isfile(cache_version_file): | |
cache_version = 0 | |
else: | |
with open(cache_version_file) as f: | |
try: | |
cache_version = int(f.read()) | |
except ValueError: | |
cache_version = 0 | |
if cache_version < 1: | |
old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 | |
if old_cache_is_not_empty: | |
logger.warning( | |
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " | |
"existing cached models. This is a one-time operation, you can interrupt it or run it " | |
"later by calling `diffusers.utils.hub_utils.move_cache()`." | |
) | |
try: | |
move_cache() | |
except Exception as e: | |
trace = "\n".join(traceback.format_tb(e.__traceback__)) | |
logger.error( | |
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " | |
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " | |
"message and we will do our best to help." | |
) | |
if cache_version < 1: | |
try: | |
os.makedirs(HF_HUB_CACHE, exist_ok=True) | |
with open(cache_version_file, "w") as f: | |
f.write("1") | |
except Exception: | |
logger.warning( | |
f"There was a problem when trying to write in your cache folder ({HF_HUB_CACHE}). Please, ensure " | |
"the directory exists and can be written to." | |
) | |
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str: | |
if variant is not None: | |
splits = weights_name.split(".") | |
splits = splits[:-1] + [variant] + splits[-1:] | |
weights_name = ".".join(splits) | |
return weights_name | |
def _get_model_file( | |
pretrained_model_name_or_path: Union[str, Path], | |
*, | |
weights_name: str, | |
subfolder: Optional[str] = None, | |
cache_dir: Optional[str] = None, | |
force_download: bool = False, | |
proxies: Optional[Dict] = None, | |
local_files_only: bool = False, | |
token: Optional[str] = None, | |
user_agent: Optional[Union[Dict, str]] = None, | |
revision: Optional[str] = None, | |
commit_hash: Optional[str] = None, | |
): | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
if os.path.isfile(pretrained_model_name_or_path): | |
return pretrained_model_name_or_path | |
elif os.path.isdir(pretrained_model_name_or_path): | |
if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): | |
# Load from a PyTorch checkpoint | |
model_file = os.path.join(pretrained_model_name_or_path, weights_name) | |
return model_file | |
elif subfolder is not None and os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, subfolder, weights_name) | |
): | |
model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name) | |
return model_file | |
else: | |
raise EnvironmentError( | |
f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." | |
) | |
else: | |
# 1. First check if deprecated way of loading from branches is used | |
if ( | |
revision in DEPRECATED_REVISION_ARGS | |
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) | |
and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0") | |
): | |
try: | |
model_file = hf_hub_download( | |
pretrained_model_name_or_path, | |
filename=_add_variant(weights_name, revision), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
subfolder=subfolder, | |
revision=revision or commit_hash, | |
) | |
warnings.warn( | |
f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.", | |
FutureWarning, | |
) | |
return model_file | |
except: # noqa: E722 | |
warnings.warn( | |
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.", | |
FutureWarning, | |
) | |
try: | |
# 2. Load model file as usual | |
model_file = hf_hub_download( | |
pretrained_model_name_or_path, | |
filename=weights_name, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
subfolder=subfolder, | |
revision=revision or commit_hash, | |
) | |
return model_file | |
except RepositoryNotFoundError as e: | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " | |
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " | |
"token having permission to this repo with `token` or log in with `huggingface-cli " | |
"login`." | |
) from e | |
except RevisionNotFoundError as e: | |
raise EnvironmentError( | |
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " | |
"this model name. Check the model page at " | |
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." | |
) from e | |
except EntryNotFoundError as e: | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." | |
) from e | |
except HTTPError as e: | |
raise EnvironmentError( | |
f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}" | |
) from e | |
except ValueError as e: | |
raise EnvironmentError( | |
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" | |
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" | |
f" directory containing a file named {weights_name} or" | |
" \nCheckout your internet connection or see how to run the library in" | |
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." | |
) from e | |
except EnvironmentError as e: | |
raise EnvironmentError( | |
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " | |
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " | |
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " | |
f"containing a file named {weights_name}" | |
) from e | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/1360801a69c0b169e3efdbb0cd05d9a0e72bfb70/src/transformers/utils/hub.py#L976 | |
# Differences are in parallelization of shard downloads and checking if shards are present. | |
def _check_if_shards_exist_locally(local_dir, subfolder, original_shard_filenames): | |
shards_path = os.path.join(local_dir, subfolder) | |
shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames] | |
for shard_file in shard_filenames: | |
if not os.path.exists(shard_file): | |
raise ValueError( | |
f"{shards_path} does not appear to have a file named {shard_file} which is " | |
"required according to the checkpoint index." | |
) | |
def _get_checkpoint_shard_files( | |
pretrained_model_name_or_path, | |
index_filename, | |
cache_dir=None, | |
proxies=None, | |
local_files_only=False, | |
token=None, | |
user_agent=None, | |
revision=None, | |
subfolder="", | |
): | |
""" | |
For a given model: | |
- download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the | |
Hub | |
- returns the list of paths to all the shards, as well as some metadata. | |
For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the | |
index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). | |
""" | |
if not os.path.isfile(index_filename): | |
raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") | |
with open(index_filename, "r") as f: | |
index = json.loads(f.read()) | |
original_shard_filenames = sorted(set(index["weight_map"].values())) | |
sharded_metadata = index["metadata"] | |
sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) | |
sharded_metadata["weight_map"] = index["weight_map"].copy() | |
shards_path = os.path.join(pretrained_model_name_or_path, subfolder) | |
# First, let's deal with local folder. | |
if os.path.isdir(pretrained_model_name_or_path): | |
_check_if_shards_exist_locally( | |
pretrained_model_name_or_path, subfolder=subfolder, original_shard_filenames=original_shard_filenames | |
) | |
return shards_path, sharded_metadata | |
# At this stage pretrained_model_name_or_path is a model identifier on the Hub | |
allow_patterns = original_shard_filenames | |
if subfolder is not None: | |
allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns] | |
ignore_patterns = ["*.json", "*.md"] | |
if not local_files_only: | |
# `model_info` call must guarded with the above condition. | |
model_files_info = model_info(pretrained_model_name_or_path, revision=revision, token=token) | |
for shard_file in original_shard_filenames: | |
shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings) | |
if not shard_file_present: | |
raise EnvironmentError( | |
f"{shards_path} does not appear to have a file named {shard_file} which is " | |
"required according to the checkpoint index." | |
) | |
try: | |
# Load from URL | |
cached_folder = snapshot_download( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
allow_patterns=allow_patterns, | |
ignore_patterns=ignore_patterns, | |
user_agent=user_agent, | |
) | |
if subfolder is not None: | |
cached_folder = os.path.join(cached_folder, subfolder) | |
# We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so | |
# we don't have to catch them here. We have also dealt with EntryNotFoundError. | |
except HTTPError as e: | |
raise EnvironmentError( | |
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try" | |
" again after checking your internet connection." | |
) from e | |
# If `local_files_only=True`, `cached_folder` may not contain all the shard files. | |
elif local_files_only: | |
_check_if_shards_exist_locally( | |
local_dir=cache_dir, subfolder=subfolder, original_shard_filenames=original_shard_filenames | |
) | |
if subfolder is not None: | |
cached_folder = os.path.join(cache_dir, subfolder) | |
return cached_folder, sharded_metadata | |
def _check_legacy_sharding_variant_format(folder: str = None, filenames: List[str] = None, variant: str = None): | |
if filenames and folder: | |
raise ValueError("Both `filenames` and `folder` cannot be provided.") | |
if not filenames: | |
filenames = [] | |
for _, _, files in os.walk(folder): | |
for file in files: | |
filenames.append(os.path.basename(file)) | |
transformers_index_format = r"\d{5}-of-\d{5}" | |
variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$") | |
return any(variant_file_re.match(f) is not None for f in filenames) | |
class PushToHubMixin: | |
""" | |
A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub. | |
""" | |
def _upload_folder( | |
self, | |
working_dir: Union[str, os.PathLike], | |
repo_id: str, | |
token: Optional[str] = None, | |
commit_message: Optional[str] = None, | |
create_pr: bool = False, | |
): | |
""" | |
Uploads all files in `working_dir` to `repo_id`. | |
""" | |
if commit_message is None: | |
if "Model" in self.__class__.__name__: | |
commit_message = "Upload model" | |
elif "Scheduler" in self.__class__.__name__: | |
commit_message = "Upload scheduler" | |
else: | |
commit_message = f"Upload {self.__class__.__name__}" | |
logger.info(f"Uploading the files of {working_dir} to {repo_id}.") | |
return upload_folder( | |
repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr | |
) | |
def push_to_hub( | |
self, | |
repo_id: str, | |
commit_message: Optional[str] = None, | |
private: Optional[bool] = None, | |
token: Optional[str] = None, | |
create_pr: bool = False, | |
safe_serialization: bool = True, | |
variant: Optional[str] = None, | |
) -> str: | |
""" | |
Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub. | |
Parameters: | |
repo_id (`str`): | |
The name of the repository you want to push your model, scheduler, or pipeline files to. It should | |
contain your organization name when pushing to an organization. `repo_id` can also be a path to a local | |
directory. | |
commit_message (`str`, *optional*): | |
Message to commit while pushing. Default to `"Upload {object}"`. | |
private (`bool`, *optional*): | |
Whether or not the repository created should be private. | |
token (`str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. The token generated when running | |
`huggingface-cli login` (stored in `~/.huggingface`). | |
create_pr (`bool`, *optional*, defaults to `False`): | |
Whether or not to create a PR with the uploaded files or directly commit. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether or not to convert the model weights to the `safetensors` format. | |
variant (`str`, *optional*): | |
If specified, weights are saved in the format `pytorch_model.<variant>.bin`. | |
Examples: | |
```python | |
from diffusers import UNet2DConditionModel | |
unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet") | |
# Push the `unet` to your namespace with the name "my-finetuned-unet". | |
unet.push_to_hub("my-finetuned-unet") | |
# Push the `unet` to an organization with the name "my-finetuned-unet". | |
unet.push_to_hub("your-org/my-finetuned-unet") | |
``` | |
""" | |
repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id | |
# Create a new empty model card and eventually tag it | |
model_card = load_or_create_model_card(repo_id, token=token) | |
model_card = populate_model_card(model_card) | |
# Save all files. | |
save_kwargs = {"safe_serialization": safe_serialization} | |
if "Scheduler" not in self.__class__.__name__: | |
save_kwargs.update({"variant": variant}) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
self.save_pretrained(tmpdir, **save_kwargs) | |
# Update model card if needed: | |
model_card.save(os.path.join(tmpdir, "README.md")) | |
return self._upload_folder( | |
tmpdir, | |
repo_id, | |
token=token, | |
commit_message=commit_message, | |
create_pr=create_pr, | |
) | |