Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Adapted from | |
https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/quantizers/quantizer_bnb_4bit.py | |
""" | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | |
from ...utils import get_module_from_name | |
from ..base import DiffusersQuantizer | |
if TYPE_CHECKING: | |
from ...models.modeling_utils import ModelMixin | |
from ...utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
is_bitsandbytes_available, | |
is_bitsandbytes_version, | |
is_torch_available, | |
logging, | |
) | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class BnB4BitDiffusersQuantizer(DiffusersQuantizer): | |
""" | |
4-bit quantization from bitsandbytes.py quantization method: | |
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the | |
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: | |
from state dict, as usual; saves weights and `quant_state` components | |
loading: | |
need to locate `quant_state` components and pass to Param4bit constructor | |
""" | |
use_keep_in_fp32_modules = True | |
requires_calibration = False | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
if self.quantization_config.llm_int8_skip_modules is not None: | |
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules | |
def validate_environment(self, *args, **kwargs): | |
if not torch.cuda.is_available(): | |
raise RuntimeError("No GPU found. A GPU is needed for quantization.") | |
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): | |
raise ImportError( | |
"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" | |
) | |
if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): | |
raise ImportError( | |
"Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" | |
) | |
if kwargs.get("from_flax", False): | |
raise ValueError( | |
"Converting into 4-bit weights from flax weights is currently not supported, please make" | |
" sure the weights are in PyTorch format." | |
) | |
device_map = kwargs.get("device_map", None) | |
if ( | |
device_map is not None | |
and isinstance(device_map, dict) | |
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload | |
): | |
device_map_without_no_convert = { | |
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert | |
} | |
if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): | |
raise ValueError( | |
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " | |
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " | |
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " | |
"`from_pretrained`. Check " | |
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " | |
"for more details. " | |
) | |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": | |
if target_dtype != torch.int8: | |
from accelerate.utils import CustomDtype | |
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") | |
return CustomDtype.INT4 | |
else: | |
raise ValueError(f"Wrong `target_dtype` ({target_dtype}) provided.") | |
def check_if_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
) -> bool: | |
import bitsandbytes as bnb | |
module, tensor_name = get_module_from_name(model, param_name) | |
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit): | |
# Add here check for loaded components' dtypes once serialization is implemented | |
return True | |
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": | |
# bias could be loaded by regular set_module_tensor_to_device() from accelerate, | |
# but it would wrongly use uninitialized weight there. | |
return True | |
else: | |
return False | |
def create_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
state_dict: Dict[str, Any], | |
unexpected_keys: Optional[List[str]] = None, | |
): | |
import bitsandbytes as bnb | |
module, tensor_name = get_module_from_name(model, param_name) | |
if tensor_name not in module._parameters: | |
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") | |
old_value = getattr(module, tensor_name) | |
if tensor_name == "bias": | |
if param_value is None: | |
new_value = old_value.to(target_device) | |
else: | |
new_value = param_value.to(target_device) | |
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) | |
module._parameters[tensor_name] = new_value | |
return | |
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): | |
raise ValueError("this function only loads `Linear4bit components`") | |
if ( | |
old_value.device == torch.device("meta") | |
and target_device not in ["meta", torch.device("meta")] | |
and param_value is None | |
): | |
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") | |
# construct `new_value` for the module._parameters[tensor_name]: | |
if self.pre_quantized: | |
# 4bit loading. Collecting components for restoring quantized weight | |
# This can be expanded to make a universal call for any quantized weight loading | |
if not self.is_serializable: | |
raise ValueError( | |
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " | |
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." | |
) | |
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( | |
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict | |
): | |
raise ValueError( | |
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." | |
) | |
quantized_stats = {} | |
for k, v in state_dict.items(): | |
# `startswith` to counter for edge cases where `param_name` | |
# substring can be present in multiple places in the `state_dict` | |
if param_name + "." in k and k.startswith(param_name): | |
quantized_stats[k] = v | |
if unexpected_keys is not None and k in unexpected_keys: | |
unexpected_keys.remove(k) | |
new_value = bnb.nn.Params4bit.from_prequantized( | |
data=param_value, | |
quantized_stats=quantized_stats, | |
requires_grad=False, | |
device=target_device, | |
) | |
else: | |
new_value = param_value.to("cpu") | |
kwargs = old_value.__dict__ | |
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) | |
module._parameters[tensor_name] = new_value | |
def check_quantized_param_shape(self, param_name, current_param_shape, loaded_param_shape): | |
n = current_param_shape.numel() | |
inferred_shape = (n,) if "bias" in param_name else ((n + 1) // 2, 1) | |
if loaded_param_shape != inferred_shape: | |
raise ValueError( | |
f"Expected the flattened shape of the current param ({param_name}) to be {loaded_param_shape} but is {inferred_shape}." | |
) | |
else: | |
return True | |
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: | |
# need more space for buffers that are created during quantization | |
max_memory = {key: val * 0.90 for key, val in max_memory.items()} | |
return max_memory | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes` | |
logger.info( | |
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " | |
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " | |
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" | |
" torch_dtype=torch.float16 to remove this warning.", | |
torch_dtype, | |
) | |
torch_dtype = torch.float16 | |
return torch_dtype | |
# (sayakpaul): I think it could be better to disable custom `device_map`s | |
# for the first phase of the integration in the interest of simplicity. | |
# Commenting this for discussions on the PR. | |
# def update_device_map(self, device_map): | |
# if device_map is None: | |
# device_map = {"": torch.cuda.current_device()} | |
# logger.info( | |
# "The device_map was not initialized. " | |
# "Setting device_map to {'':torch.cuda.current_device()}. " | |
# "If you want to use the model for inference, please set device_map ='auto' " | |
# ) | |
# return device_map | |
def _process_model_before_weight_loading( | |
self, | |
model: "ModelMixin", | |
device_map, | |
keep_in_fp32_modules: List[str] = [], | |
**kwargs, | |
): | |
from .utils import replace_with_bnb_linear | |
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload | |
# We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons | |
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules | |
if not isinstance(self.modules_to_not_convert, list): | |
self.modules_to_not_convert = [self.modules_to_not_convert] | |
self.modules_to_not_convert.extend(keep_in_fp32_modules) | |
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` | |
if isinstance(device_map, dict) and len(device_map.keys()) > 1: | |
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] | |
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: | |
raise ValueError( | |
"If you want to offload some keys to `cpu` or `disk`, you need to set " | |
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " | |
" converted to 8-bit but kept in 32-bit." | |
) | |
self.modules_to_not_convert.extend(keys_on_cpu) | |
# Purge `None`. | |
# Unlike `transformers`, we don't know if we should always keep certain modules in FP32 | |
# in case of diffusion transformer models. For language models and others alike, `lm_head` | |
# and tied modules are usually kept in FP32. | |
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] | |
model = replace_with_bnb_linear( | |
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config | |
) | |
model.config.quantization_config = self.quantization_config | |
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): | |
model.is_loaded_in_4bit = True | |
model.is_4bit_serializable = self.is_serializable | |
return model | |
def is_serializable(self): | |
# Because we're mandating `bitsandbytes` 0.43.3. | |
return True | |
def is_trainable(self) -> bool: | |
# Because we're mandating `bitsandbytes` 0.43.3. | |
return True | |
def _dequantize(self, model): | |
from .utils import dequantize_and_replace | |
is_model_on_cpu = model.device.type == "cpu" | |
if is_model_on_cpu: | |
logger.info( | |
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." | |
) | |
model.to(torch.cuda.current_device()) | |
model = dequantize_and_replace( | |
model, self.modules_to_not_convert, quantization_config=self.quantization_config | |
) | |
if is_model_on_cpu: | |
model.to("cpu") | |
return model | |
class BnB8BitDiffusersQuantizer(DiffusersQuantizer): | |
""" | |
8-bit quantization from bitsandbytes quantization method: | |
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the | |
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call | |
saving: | |
from state dict, as usual; saves weights and 'SCB' component | |
loading: | |
need to locate SCB component and pass to the Linear8bitLt object | |
""" | |
use_keep_in_fp32_modules = True | |
requires_calibration = False | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
if self.quantization_config.llm_int8_skip_modules is not None: | |
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules | |
def validate_environment(self, *args, **kwargs): | |
if not torch.cuda.is_available(): | |
raise RuntimeError("No GPU found. A GPU is needed for quantization.") | |
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): | |
raise ImportError( | |
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" | |
) | |
if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): | |
raise ImportError( | |
"Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" | |
) | |
if kwargs.get("from_flax", False): | |
raise ValueError( | |
"Converting into 8-bit weights from flax weights is currently not supported, please make" | |
" sure the weights are in PyTorch format." | |
) | |
device_map = kwargs.get("device_map", None) | |
if ( | |
device_map is not None | |
and isinstance(device_map, dict) | |
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload | |
): | |
device_map_without_no_convert = { | |
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert | |
} | |
if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): | |
raise ValueError( | |
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " | |
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " | |
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " | |
"`from_pretrained`. Check " | |
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " | |
"for more details. " | |
) | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory | |
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: | |
# need more space for buffers that are created during quantization | |
max_memory = {key: val * 0.90 for key, val in max_memory.items()} | |
return max_memory | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.update_torch_dtype | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes` | |
logger.info( | |
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " | |
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " | |
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" | |
" torch_dtype=torch.float16 to remove this warning.", | |
torch_dtype, | |
) | |
torch_dtype = torch.float16 | |
return torch_dtype | |
# # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.update_device_map | |
# def update_device_map(self, device_map): | |
# if device_map is None: | |
# device_map = {"": torch.cuda.current_device()} | |
# logger.info( | |
# "The device_map was not initialized. " | |
# "Setting device_map to {'':torch.cuda.current_device()}. " | |
# "If you want to use the model for inference, please set device_map ='auto' " | |
# ) | |
# return device_map | |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": | |
if target_dtype != torch.int8: | |
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization") | |
return torch.int8 | |
def check_if_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
): | |
import bitsandbytes as bnb | |
module, tensor_name = get_module_from_name(model, param_name) | |
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params): | |
if self.pre_quantized: | |
if param_name.replace("weight", "SCB") not in state_dict.keys(): | |
raise ValueError("Missing quantization component `SCB`") | |
if param_value.dtype != torch.int8: | |
raise ValueError( | |
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`." | |
) | |
return True | |
return False | |
def create_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
state_dict: Dict[str, Any], | |
unexpected_keys: Optional[List[str]] = None, | |
): | |
import bitsandbytes as bnb | |
fp16_statistics_key = param_name.replace("weight", "SCB") | |
fp16_weights_format_key = param_name.replace("weight", "weight_format") | |
fp16_statistics = state_dict.get(fp16_statistics_key, None) | |
fp16_weights_format = state_dict.get(fp16_weights_format_key, None) | |
module, tensor_name = get_module_from_name(model, param_name) | |
if tensor_name not in module._parameters: | |
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") | |
old_value = getattr(module, tensor_name) | |
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params): | |
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.") | |
if ( | |
old_value.device == torch.device("meta") | |
and target_device not in ["meta", torch.device("meta")] | |
and param_value is None | |
): | |
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") | |
new_value = param_value.to("cpu") | |
if self.pre_quantized and not self.is_serializable: | |
raise ValueError( | |
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " | |
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." | |
) | |
kwargs = old_value.__dict__ | |
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device) | |
module._parameters[tensor_name] = new_value | |
if fp16_statistics is not None: | |
setattr(module.weight, "SCB", fp16_statistics.to(target_device)) | |
if unexpected_keys is not None: | |
unexpected_keys.remove(fp16_statistics_key) | |
# We just need to pop the `weight_format` keys from the state dict to remove unneeded | |
# messages. The correct format is correctly retrieved during the first forward pass. | |
if fp16_weights_format is not None and unexpected_keys is not None: | |
unexpected_keys.remove(fp16_weights_format_key) | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer._process_model_after_weight_loading with 4bit->8bit | |
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): | |
model.is_loaded_in_8bit = True | |
model.is_8bit_serializable = self.is_serializable | |
return model | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer._process_model_before_weight_loading | |
def _process_model_before_weight_loading( | |
self, | |
model: "ModelMixin", | |
device_map, | |
keep_in_fp32_modules: List[str] = [], | |
**kwargs, | |
): | |
from .utils import replace_with_bnb_linear | |
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload | |
# We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons | |
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules | |
if not isinstance(self.modules_to_not_convert, list): | |
self.modules_to_not_convert = [self.modules_to_not_convert] | |
self.modules_to_not_convert.extend(keep_in_fp32_modules) | |
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` | |
if isinstance(device_map, dict) and len(device_map.keys()) > 1: | |
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] | |
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: | |
raise ValueError( | |
"If you want to offload some keys to `cpu` or `disk`, you need to set " | |
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " | |
" converted to 8-bit but kept in 32-bit." | |
) | |
self.modules_to_not_convert.extend(keys_on_cpu) | |
# Purge `None`. | |
# Unlike `transformers`, we don't know if we should always keep certain modules in FP32 | |
# in case of diffusion transformer models. For language models and others alike, `lm_head` | |
# and tied modules are usually kept in FP32. | |
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] | |
model = replace_with_bnb_linear( | |
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config | |
) | |
model.config.quantization_config = self.quantization_config | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.is_serializable | |
def is_serializable(self): | |
# Because we're mandating `bitsandbytes` 0.43.3. | |
return True | |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.is_serializable | |
def is_trainable(self) -> bool: | |
# Because we're mandating `bitsandbytes` 0.43.3. | |
return True | |
def _dequantize(self, model): | |
from .utils import dequantize_and_replace | |
model = dequantize_and_replace( | |
model, self.modules_to_not_convert, quantization_config=self.quantization_config | |
) | |
return model | |