DifFace / app.py
Zongsheng
first upload
b2aaa70
raw
history blame
5.2 kB
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-12-16 16:17:14
import os
import torch
import argparse
import numpy as np
import grdio as gr
from pathlib import Path
from einops import rearrange
from omegaconf import OmegaConf
from skimage import img_as_ubyte
from utils import util_opts
from utils import util_image
from utils import util_common
from sampler import DifIRSampler
from ResizeRight.resize_right import resize
from basicsr.utils.download_util import load_file_from_url
def predict(im_path, background_enhance, face_upsample, upscale, started_timesteps):
cfg_path = 'configs/sample/iddpm_ffhq512_swinir.yaml'
# setting configurations
configs = OmegaConf.load(cfg_path)
configs.aligned = False
configs.background_enhance = background_enhance
configs.face_upsample = face_upsample
started_timesteps = int(started_timesteps)
assert started_timesteps < int(configs.diffusion.params.timestep_respacing)
# prepare the checkpoint
if not Path(configs.model.ckpt_path).exists():
load_file_from_url(
url="https://github.com/zsyOAOA/DifFace/releases/download/V1.0/iddpm_ffhq512_ema500000.pth",
model_dir=str(Path(configs.model.ckpt_path).parent),
progress=True,
file_name=Path(configs.model.ckpt_path).name,
)
if not Path(configs.model_ir.ckpt_path).exists():
load_file_from_url(
url="https://github.com/zsyOAOA/DifFace/releases/download/V1.0/General_Face_ffhq512.pth",
model_dir=str(Path(configs.model_ir.ckpt_path).parent),
progress=True,
file_name=Path(configs.model_ir.ckpt_path).name,
)
# Load image
im_lq = util_image.imread(im_path, chn='bgr', dtype='uint8')
if upscale > 4:
upscale = 4 # avoid momory exceeded due to too large upscale
if upscale > 2 and min(im_lq.shape[:2])>1280:
upscale = 2 # avoid momory exceeded due to too large img resolution
configs.detection.upscale = int(upscale)
# build the sampler for diffusion
sampler_dist = DifIRSampler(configs)
image_restored, face_restored, face_cropped = sampler_dist.sample_func_bfr_unaligned(
y0=im_lq,
start_timesteps=started_timesteps,
need_restoration=True,
draw_box=False,
)
restored_image_dir = Path('restored_output')
if not restored_image_dir.exists():
restored_image_dir.mkdir()
# save the whole image
save_path = restored_image_dir / Path(im_path).name
util_image.imwrite(image_restored, save_path, chn='bgr', dtype_in='uint8')
return image_restored, str(save_path)
# im_path = './testdata/whole_imgs/00.jpg'
# predict(im_path, True, True, 3, 100)
title = "DifFace: Blind Face Restoration with Diffused Error Contraction"
description = r"""<center><img src='./assets/DifFace_Framework.png' alt='DifFace logo'></center>
<b>Official Gradio demo</b> for <a href='https://github.com/zsyOAOA/DifFace' target='_blank'><b>DifFace: Blind Face Restoration with Diffused Error Contraction</b></a>.<br>
πŸ”₯ DifFace is a robust face restoration algorithm for old or corrupted photos.<br>
"""
article = r"""
If DifFace is helpful for your work, please help to ⭐ the <a href='https://github.com/zsyOAOA/DifFace' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/DifFace?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/DifFace)
---
πŸ“ **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@article{yue2022difface,
title={DifFace: Blind Face Restoration with Diffused Error Contraction},
author={Yue, Zongsheng and Loy, Chen Change},
journal={arXiv preprint arXiv:2212.06512},
year={2022}
}
```
πŸ“‹ **License**
This project is licensed under <a rel="license" href="https://github.com/zsyOAOA/DifFace/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
πŸ“§ **Contact**
If you have any questions, please feel free to contact me via <b>zsyzam@gmail.com</b>.
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/DifFace)
"""
demo = gr.Interface(
inference,
inputs=[
gr.inputs.Image(type="filepath", label="Input"),
gr.inputs.Checkbox(default=True, label="Background_Enhance"),
gr.inputs.Checkbox(default=True, label="Face_Upsample"),
gr.inputs.Number(default=2, label="Rescaling_Factor (up to 4)"),
gr.Slider(1, 200, value=100, step=10, label='Realism-Fidelity Trade-off')
],
outputs=[
gr.outputs.Image(type="numpy", label="Output"),
gr.outputs.File(label="Download the output")
],
title=title,
description=description,
article=article,
examples=[
['./testdata/whole_imgs/00.jpg', True, True, 2, 100],
['./testdata/whole_imgs/01.jpg', True, True, 2, 100],
['./testdata/whole_imgs/04.jpg', True, True, 2, 100],
['./testdata/whole_imgs/Solvay_conference_1927.png', True, True, 2, 100],
]
)
demo.queue(concurrency_count=4)
demo.launch()