Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import tensorflow | |
with open('full_pipeline.pkl', 'rb') as file_1: | |
model_pipeline = joblib.load(file_1) | |
from tensorflow.keras.models import load_model | |
model_ann = load_model('churn_model.h5') | |
st.title("Customer Churn Prediction") | |
membership_category = st.selectbox('Membership Category',('No Membership', | |
'Basic Membership', | |
'Silver Membership', | |
'Premium Membership', | |
'Gold Membership', | |
'Platinum Membership'), index=1) | |
avg_transaction_value = st.number_input('Average Transaction Value :', | |
min_value = 800.460000, | |
max_value = 99914.050000, | |
value = 800.460000) | |
points_in_wallet = st.number_input('Points In Wallet :', | |
min_value = 0.000000, | |
max_value = 2069.069761, | |
value = 0.000000) | |
feedback = st.selectbox('Feedback',('Poor Website', | |
'Poor Customer Service', | |
'Too many ads', | |
'Poor Product Quality', | |
'No reason specified', | |
'Products always in Stock', | |
'Reasonable Price', | |
'Quality Customer Care', | |
'User Friendly Website'), index=1) | |
df_inf = pd.DataFrame({ | |
'membership_category' : [membership_category], | |
'avg_transaction_value' : [avg_transaction_value], | |
'points_in_wallet' : [points_in_wallet], | |
'feedback' : [feedback] | |
}) | |
if st.button('Predict'): | |
data_inf_transform = model_pipeline.transform(df_inf) | |
y_pred_inf = model_ann.predict(data_inf_transform) | |
y_pred_inf = np.where(y_pred_inf >= 0.5, 1, 0) | |
churn_status = np.where(y_pred_inf == 0, "No", "Yes") | |
if churn_status == "No": | |
st.success(f"The customer is predicted to `not churn`.") | |
else: | |
st.error(f"The customer is predicted to `churn`.") |