Spaces:
Running
Running
Update README
Browse files
README.md
CHANGED
@@ -59,8 +59,21 @@ The default value is 30 minutes.
|
|
59 |
python app.py --input_audio_max_duration -1 --vad_parallel_devices 0,1 --vad_process_timeout 3600
|
60 |
```
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
You may also use `vad_process_timeout` with a single device (`--vad_parallel_devices 0`), if you prefer to always free video memory after a period of time.
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# Docker
|
65 |
|
66 |
To run it in Docker, first install Docker and optionally the NVIDIA Container Toolkit in order to use the GPU.
|
|
|
59 |
python app.py --input_audio_max_duration -1 --vad_parallel_devices 0,1 --vad_process_timeout 3600
|
60 |
```
|
61 |
|
62 |
+
To execute the Silero VAD itself in parallel, use the `vad_cpu_cores` option:
|
63 |
+
```
|
64 |
+
python app.py --input_audio_max_duration -1 --vad_parallel_devices 0,1 --vad_process_timeout 3600 --vad_cpu_cores 4
|
65 |
+
```
|
66 |
+
|
67 |
You may also use `vad_process_timeout` with a single device (`--vad_parallel_devices 0`), if you prefer to always free video memory after a period of time.
|
68 |
|
69 |
+
### Auto Parallel
|
70 |
+
|
71 |
+
You can also set `auto_parallel` to `True`. This will set `vad_parallel_devices` to use all the GPU devices on the system, and `vad_cpu_cores` to be equal to the number of
|
72 |
+
cores (up to 8):
|
73 |
+
```
|
74 |
+
python app.py --input_audio_max_duration -1 --auto_parallel True
|
75 |
+
```
|
76 |
+
|
77 |
# Docker
|
78 |
|
79 |
To run it in Docker, first install Docker and optionally the NVIDIA Container Toolkit in order to use the GPU.
|