KingNish commited on
Commit
6785fcb
1 Parent(s): 45471c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -26
app.py CHANGED
@@ -5,7 +5,6 @@ from transformers import AutoModelForImageSegmentation
5
  import torch
6
  from torchvision import transforms
7
  import moviepy.editor as mp
8
- from pydub import AudioSegment
9
  from PIL import Image
10
  import numpy as np
11
  import os
@@ -28,7 +27,19 @@ transform_image = transforms.Compose(
28
  )
29
 
30
  BATCH_SIZE = 3
31
- executor = ThreadPoolExecutor(max_workers=4)
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  @spaces.GPU
34
  def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
@@ -38,66 +49,62 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
38
  audio = video.audio
39
  except AttributeError:
40
  audio = None
 
41
  if fps == 0:
42
  fps = video.fps
43
-
44
  frames = video.iter_frames(fps=fps)
45
  processed_frames = []
46
- yield gr.update(visible=True), gr.update(visible=False)
47
 
48
  if bg_type == "Video":
49
  background_video = mp.VideoFileClip(bg_video)
50
-
51
  if background_video.duration < video.duration and video_handling == "slow_down":
52
  slow_down_factor = video.duration / background_video.duration
53
  else:
54
  slow_down_factor = 1
55
  background_frames = list(background_video.iter_frames(fps=fps))
56
-
57
  else:
58
  background_frames = None
59
- slow_down_factor = None
60
-
61
 
62
  bg_frame_index = 0
63
  frame_batch = []
64
 
65
-
66
  for i, frame in enumerate(frames):
67
  frame_batch.append(frame)
68
-
69
  if len(frame_batch) == BATCH_SIZE or i == int(video.fps * video.duration) - 1:
70
-
71
  pil_images = [Image.fromarray(f) for f in frame_batch]
72
 
73
  if bg_type == "Video":
74
  processed_images = list(executor.map(process, pil_images, [get_background_image(bg_type, bg_image, background_frames, bg_frame_index + j, video_handling, slow_down_factor) for j in range(len(pil_images))]))
75
  bg_frame_index += len(frame_batch)
76
  elif bg_type == "Color":
77
- processed_images = list(executor.map(process, pil_images, [color] * len(pil_images)))
78
  elif bg_type == "Image":
79
- processed_images = list(executor.map(process, pil_images, [bg_image] * len(pil_images)))
80
  else:
81
- processed_images = pil_images
82
 
83
  for processed_image in processed_images:
84
  processed_frames.append(np.array(processed_image))
85
- yield processed_image, None
86
  frame_batch = []
87
 
 
88
  processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
89
  if audio:
90
  processed_video = processed_video.set_audio(audio)
91
 
 
92
  temp_dir = "temp"
93
  os.makedirs(temp_dir, exist_ok=True)
94
  unique_filename = str(uuid.uuid4()) + ".mp4"
95
  temp_filepath = os.path.join(temp_dir, unique_filename)
96
-
97
  processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
98
 
99
- yield gr.update(visible=False), gr.update(visible=True)
100
- yield processed_image, temp_filepath
 
101
 
102
  except Exception as e:
103
  print(f"Error: {e}")
@@ -105,30 +112,30 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
105
  yield None, f"Error processing video: {e}"
106
 
107
 
 
 
108
  def process(image, bg):
109
  image_size = image.size
110
  input_images = transform_image(image).unsqueeze(0).to("cuda")
111
- # Prediction
112
  with torch.no_grad():
113
  preds = birefnet(input_images)[-1].sigmoid().cpu()
114
  pred = preds[0].squeeze()
115
  pred_pil = transforms.ToPILImage()(pred)
116
  mask = pred_pil.resize(image_size)
117
 
118
- if isinstance(bg, str) and bg.startswith("#"):
119
  color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
120
- background = Image.new("RGBA", image_size, color_rgb + (255,))
121
  elif isinstance(bg, Image.Image):
122
- background = bg.convert("RGBA").resize(image_size)
123
- else:
124
- background = Image.open(bg).convert("RGBA").resize(image_size)
125
 
126
- # Composite the image onto the background using the mask
127
  image = Image.composite(image, background, mask)
128
-
129
  return image
130
 
131
 
 
132
  with gr.Blocks(theme=gr.themes.Ocean()) as demo:
133
  with gr.Row():
134
  in_video = gr.Video(label="Input Video", interactive=True)
 
5
  import torch
6
  from torchvision import transforms
7
  import moviepy.editor as mp
 
8
  from PIL import Image
9
  import numpy as np
10
  import os
 
27
  )
28
 
29
  BATCH_SIZE = 3
30
+ executor = ThreadPoolExecutor(max_workers=4) # Adjust as needed
31
+
32
+ def get_background_image(bg_type, bg_image, background_frames, current_frame_index, video_handling, slow_down_factor):
33
+ if bg_type == "Video":
34
+ if video_handling == "slow_down":
35
+ frame_index = int(current_frame_index / slow_down_factor)
36
+ else:
37
+ frame_index = current_frame_index
38
+ return Image.fromarray(background_frames[frame_index % len(background_frames)])
39
+ elif bg_type == "Image":
40
+ return bg_image # Directly returns the image path
41
+ else: # bg_type == "Color"
42
+ return bg_image # bg_image here is the color string
43
 
44
  @spaces.GPU
45
  def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
 
49
  audio = video.audio
50
  except AttributeError:
51
  audio = None
52
+
53
  if fps == 0:
54
  fps = video.fps
 
55
  frames = video.iter_frames(fps=fps)
56
  processed_frames = []
57
+ yield gr.update(visible=True), gr.update(visible=False) # Update Gradio display
58
 
59
  if bg_type == "Video":
60
  background_video = mp.VideoFileClip(bg_video)
 
61
  if background_video.duration < video.duration and video_handling == "slow_down":
62
  slow_down_factor = video.duration / background_video.duration
63
  else:
64
  slow_down_factor = 1
65
  background_frames = list(background_video.iter_frames(fps=fps))
 
66
  else:
67
  background_frames = None
68
+ slow_down_factor = None # Not needed for image or color backgrounds
 
69
 
70
  bg_frame_index = 0
71
  frame_batch = []
72
 
 
73
  for i, frame in enumerate(frames):
74
  frame_batch.append(frame)
 
75
  if len(frame_batch) == BATCH_SIZE or i == int(video.fps * video.duration) - 1:
 
76
  pil_images = [Image.fromarray(f) for f in frame_batch]
77
 
78
  if bg_type == "Video":
79
  processed_images = list(executor.map(process, pil_images, [get_background_image(bg_type, bg_image, background_frames, bg_frame_index + j, video_handling, slow_down_factor) for j in range(len(pil_images))]))
80
  bg_frame_index += len(frame_batch)
81
  elif bg_type == "Color":
82
+ processed_images = list(executor.map(process, pil_images, [color] * len(pil_images))) # Use color directly
83
  elif bg_type == "Image":
84
+ processed_images = list(executor.map(process, pil_images, [bg_image] * len(pil_images))) # Use image path directly
85
  else:
86
+ processed_images = pil_images # No processing needed
87
 
88
  for processed_image in processed_images:
89
  processed_frames.append(np.array(processed_image))
90
+ yield processed_image, None # Update Gradio with processed images
91
  frame_batch = []
92
 
93
+
94
  processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
95
  if audio:
96
  processed_video = processed_video.set_audio(audio)
97
 
98
+ # Save processed video to a temporary file
99
  temp_dir = "temp"
100
  os.makedirs(temp_dir, exist_ok=True)
101
  unique_filename = str(uuid.uuid4()) + ".mp4"
102
  temp_filepath = os.path.join(temp_dir, unique_filename)
 
103
  processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
104
 
105
+
106
+ yield gr.update(visible=False), gr.update(visible=True) # Update Gradio display
107
+ yield processed_image, temp_filepath # Return final output
108
 
109
  except Exception as e:
110
  print(f"Error: {e}")
 
112
  yield None, f"Error processing video: {e}"
113
 
114
 
115
+
116
+
117
  def process(image, bg):
118
  image_size = image.size
119
  input_images = transform_image(image).unsqueeze(0).to("cuda")
 
120
  with torch.no_grad():
121
  preds = birefnet(input_images)[-1].sigmoid().cpu()
122
  pred = preds[0].squeeze()
123
  pred_pil = transforms.ToPILImage()(pred)
124
  mask = pred_pil.resize(image_size)
125
 
126
+ if isinstance(bg, str) and bg.startswith("#"): # If bg is a color
127
  color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
128
+ background = Image.new("RGBA", image_size, color_rgb + (255,)) # Create image with color
129
  elif isinstance(bg, Image.Image):
130
+ background = bg.convert("RGBA").resize(image_size) #Resize if bg is an image
131
+ else: #If bg is an image path
132
+ background = Image.open(bg).convert("RGBA").resize(image_size) # Open and resize image
133
 
 
134
  image = Image.composite(image, background, mask)
 
135
  return image
136
 
137
 
138
+
139
  with gr.Blocks(theme=gr.themes.Ocean()) as demo:
140
  with gr.Row():
141
  in_video = gr.Video(label="Input Video", interactive=True)