|
import gradio as gr |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
import moviepy.editor as mp |
|
from pydub import AudioSegment |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import tempfile |
|
import uuid |
|
import time |
|
import threading |
|
|
|
torch.set_float32_matmul_precision("medium") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to(device) |
|
|
|
birefnet_lite = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True |
|
) |
|
birefnet_lite.to(device) |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
|
|
|
|
def cleanup_temp_files(): |
|
while True: |
|
temp_dir = "temp" |
|
if os.path.exists(temp_dir): |
|
for filename in os.listdir(temp_dir): |
|
filepath = os.path.join(temp_dir, filename) |
|
if os.path.isfile(filepath): |
|
file_age = time.time() - os.path.getmtime(filepath) |
|
if file_age > 600: |
|
try: |
|
os.remove(filepath) |
|
print(f"Deleted temporary file: {filepath}") |
|
except Exception as e: |
|
print(f"Error deleting file {filepath}: {e}") |
|
time.sleep(60) |
|
|
|
|
|
|
|
cleanup_thread = threading.Thread(target=cleanup_temp_files, daemon=True) |
|
cleanup_thread.start() |
|
|
|
|
|
@spaces.GPU |
|
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True): |
|
try: |
|
start_time = time.time() |
|
|
|
|
|
video = mp.VideoFileClip(vid) |
|
|
|
|
|
if fps == 0: |
|
fps = video.fps |
|
|
|
|
|
audio = video.audio |
|
|
|
|
|
frames = video.iter_frames(fps=fps) |
|
|
|
|
|
processed_frames = [] |
|
yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds" |
|
|
|
if bg_type == "Video": |
|
background_video = mp.VideoFileClip(bg_video) |
|
if background_video.duration < video.duration: |
|
if video_handling == "slow_down": |
|
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration) |
|
else: |
|
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1)) |
|
background_frames = list(background_video.iter_frames(fps=fps)) |
|
else: |
|
background_frames = None |
|
|
|
bg_frame_index = 0 |
|
|
|
for i, frame in enumerate(frames): |
|
pil_image = Image.fromarray(frame) |
|
if bg_type == "Color": |
|
processed_image = process(pil_image, color, fast_mode) |
|
elif bg_type == "Image": |
|
processed_image = process(pil_image, bg_image, fast_mode) |
|
elif bg_type == "Video": |
|
if video_handling == "slow_down": |
|
background_frame = background_frames[bg_frame_index % len(background_frames)] |
|
bg_frame_index += 1 |
|
background_image = Image.fromarray(background_frame) |
|
processed_image = process(pil_image, background_image, fast_mode) |
|
else: |
|
background_frame = background_frames[bg_frame_index % len(background_frames)] |
|
bg_frame_index += 1 |
|
background_image = Image.fromarray(background_frame) |
|
processed_image = process(pil_image, background_image, fast_mode) |
|
else: |
|
processed_image = pil_image |
|
|
|
processed_frames.append(np.array(processed_image)) |
|
elapsed_time = time.time() - start_time |
|
yield processed_image, None, f"Processing frame {i+1}... Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
|
|
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) |
|
|
|
|
|
processed_video = processed_video.set_audio(audio) |
|
|
|
|
|
temp_dir = "temp" |
|
os.makedirs(temp_dir, exist_ok=True) |
|
unique_filename = str(uuid.uuid4()) + ".mp4" |
|
temp_filepath = os.path.join(temp_dir, unique_filename) |
|
processed_video.write_videofile(temp_filepath, codec="libx264") |
|
|
|
elapsed_time = time.time() - start_time |
|
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
yield processed_image, temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
elapsed_time = time.time() - start_time |
|
yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" |
|
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" |
|
|
|
|
|
def process(image, bg, fast_mode=False): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cuda") |
|
|
|
|
|
model = birefnet_lite if fast_mode else birefnet |
|
|
|
|
|
with torch.no_grad(): |
|
preds = model(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
|
|
if isinstance(bg, str) and bg.startswith("#"): |
|
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) |
|
background = Image.new("RGBA", image_size, color_rgb + (255,)) |
|
elif isinstance(bg, Image.Image): |
|
background = bg.convert("RGBA").resize(image_size) |
|
else: |
|
background = Image.open(bg).convert("RGBA").resize(image_size) |
|
|
|
|
|
image = Image.composite(image, background, mask) |
|
|
|
return image |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Ocean()) as demo: |
|
gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.") |
|
with gr.Row(): |
|
in_video = gr.Video(label="Input Video", interactive=True) |
|
stream_image = gr.Image(label="Streaming Output", visible=False) |
|
out_video = gr.Video(label="Final Output Video") |
|
submit_button = gr.Button("Change Background", interactive=True) |
|
with gr.Row(): |
|
fps_slider = gr.Slider( |
|
minimum=0, |
|
maximum=60, |
|
step=1, |
|
value=0, |
|
label="Output FPS (0 will inherit the original fps value)", |
|
interactive=True |
|
) |
|
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) |
|
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) |
|
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) |
|
bg_video = gr.Video(label="Background Video", visible=False, interactive=True) |
|
with gr.Column(visible=False) as video_handling_options: |
|
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) |
|
fast_mode_checkbox = gr.Checkbox(label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True) |
|
|
|
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False) |
|
|
|
def update_visibility(bg_type): |
|
if bg_type == "Color": |
|
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) |
|
elif bg_type == "Image": |
|
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) |
|
elif bg_type == "Video": |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) |
|
|
|
|
|
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) |
|
|
|
|
|
examples = gr.Examples( |
|
[ |
|
["rickroll-2sec.mp4", "Video", None, "background.mp4"], |
|
["rickroll-2sec.mp4", "Image", "images.webp", None], |
|
["rickroll-2sec.mp4", "Color", None, None], |
|
], |
|
inputs=[in_video, bg_type, bg_image, bg_video], |
|
outputs=[stream_image, out_video, time_textbox], |
|
fn=fn, |
|
cache_examples=True, |
|
cache_mode="eager", |
|
) |
|
|
|
|
|
submit_button.click( |
|
fn, |
|
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio, fast_mode_checkbox], |
|
outputs=[stream_image, out_video, time_textbox], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_error=True) |