John6666 commited on
Commit
f575d14
1 Parent(s): a6a4e0b

Upload 5 files

Browse files
README.md CHANGED
@@ -1,12 +1,9 @@
1
- ---
2
- title: Test8
3
- emoji: 📚
4
- colorFrom: red
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 4.38.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ title: test
2
+ emoji: 🧨
3
+ colorFrom: indigo
4
+ colorTo: purple
5
+ sdk: gradio
6
+ sdk_version: 4.38.1
7
+ app_file: app.py
8
+ pinned: true
9
+ license: mit
 
 
 
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from convert_url_to_diffusers_sdxl_gr import (
3
+ convert_url_to_diffusers_repo,
4
+ SCHEDULER_CONFIG_MAP,
5
+ )
6
+
7
+ vaes = [""]
8
+ loras = [""]
9
+ schedulers = list(SCHEDULER_CONFIG_MAP.keys())
10
+
11
+ css = """"""
12
+
13
+ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
14
+ gr.Markdown("# Download and convert any Stable Diffusion XL safetensors to Diffusers and create your repo")
15
+ gr.Markdown(
16
+ f"""
17
+ The steps are the following:
18
+ - Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens).
19
+ - Input a model download url from the Hub or Civitai or other sites.
20
+ - If you want to download a model from Civitai, paste a Civitai API Key.
21
+ - Input your new repo name. e.g. 'yourid/newrepo'.
22
+ - Click "Submit".
23
+ - Patiently wait until the output changes.
24
+ """
25
+ )
26
+ with gr.Column():
27
+ dl_url = gr.Textbox(label="URL to download", placeholder="https://...", value="", max_lines=1)
28
+ repo_id = gr.Textbox(label="Your New Repo ID", placeholder="author/model", value="", max_lines=1)
29
+ hf_token = gr.Textbox(label="Your HF write token", placeholder="", value="", max_lines=1)
30
+ civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1)
31
+ is_half = gr.Checkbox(label="Half precision", value=True)
32
+ vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
33
+ scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
34
+ lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True)
35
+ lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
36
+ lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True)
37
+ lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
38
+ lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True)
39
+ lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
40
+ lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True)
41
+ lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
42
+ lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True)
43
+ lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
44
+ run_button = gr.Button(value="Submit")
45
+ repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None)
46
+ output_md = gr.Markdown(label="Output")
47
+
48
+ gr.on(
49
+ triggers=[run_button.click],
50
+ fn=convert_url_to_diffusers_repo,
51
+ inputs=[dl_url, repo_id, hf_token, civitai_key, repo_urls, is_half, vae, scheduler,
52
+ lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s],
53
+ outputs=[repo_urls, output_md],
54
+ )
55
+
56
+ demo.queue()
57
+ demo.launch()
convert_url_to_diffusers_sdxl.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ import os
4
+ import torch
5
+ from diffusers import StableDiffusionXLPipeline, AutoencoderKL
6
+ # also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
7
+
8
+
9
+ def list_sub(a, b):
10
+ return [e for e in a if e not in b]
11
+
12
+
13
+ def is_repo_name(s):
14
+ import re
15
+ return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
16
+
17
+
18
+ def download_thing(directory, url, civitai_api_key=""):
19
+ url = url.strip()
20
+ if "drive.google.com" in url:
21
+ original_dir = os.getcwd()
22
+ os.chdir(directory)
23
+ os.system(f"gdown --fuzzy {url}")
24
+ os.chdir(original_dir)
25
+ elif "huggingface.co" in url:
26
+ url = url.replace("?download=true", "")
27
+ if "/blob/" in url:
28
+ url = url.replace("/blob/", "/resolve/")
29
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
30
+ else:
31
+ os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
32
+ elif "civitai.com" in url:
33
+ if "?" in url:
34
+ url = url.split("?")[0]
35
+ if civitai_api_key:
36
+ url = url + f"?token={civitai_api_key}"
37
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
38
+ else:
39
+ print("You need an API key to download Civitai models.")
40
+ else:
41
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
42
+
43
+
44
+ def get_local_model_list(dir_path):
45
+ model_list = []
46
+ valid_extensions = ('.safetensors')
47
+ for file in Path(dir_path).glob("*"):
48
+ if file.suffix in valid_extensions:
49
+ file_path = str(Path(f"{dir_path}/{file.name}"))
50
+ model_list.append(file_path)
51
+ return model_list
52
+
53
+
54
+ def get_download_file(temp_dir, url, civitai_key):
55
+ if not "http" in url and is_repo_name(url) and not Path(url).exists():
56
+ print(f"Use HF Repo: {url}")
57
+ new_file = url
58
+ elif not "http" in url and Path(url).exists():
59
+ print(f"Use local file: {url}")
60
+ new_file = url
61
+ elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
62
+ print(f"File to download alreday exists: {url}")
63
+ new_file = f"{temp_dir}/{url.split('/')[-1]}"
64
+ else:
65
+ print(f"Start downloading: {url}")
66
+ before = get_local_model_list(temp_dir)
67
+ try:
68
+ download_thing(temp_dir, url.strip(), civitai_key)
69
+ except Exception:
70
+ print(f"Download failed: {url}")
71
+ return ""
72
+ after = get_local_model_list(temp_dir)
73
+ new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
74
+ if not new_file:
75
+ print(f"Download failed: {url}")
76
+ return ""
77
+ print(f"Download completed: {url}")
78
+ return new_file
79
+
80
+
81
+ from diffusers import (
82
+ DPMSolverMultistepScheduler,
83
+ DPMSolverSinglestepScheduler,
84
+ KDPM2DiscreteScheduler,
85
+ EulerDiscreteScheduler,
86
+ EulerAncestralDiscreteScheduler,
87
+ HeunDiscreteScheduler,
88
+ LMSDiscreteScheduler,
89
+ DDIMScheduler,
90
+ DEISMultistepScheduler,
91
+ UniPCMultistepScheduler,
92
+ LCMScheduler,
93
+ PNDMScheduler,
94
+ KDPM2AncestralDiscreteScheduler,
95
+ DPMSolverSDEScheduler,
96
+ EDMDPMSolverMultistepScheduler,
97
+ DDPMScheduler,
98
+ EDMEulerScheduler,
99
+ TCDScheduler,
100
+ )
101
+
102
+
103
+ SCHEDULER_CONFIG_MAP = {
104
+ "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
105
+ "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
106
+ "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
107
+ "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
108
+ "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
109
+ "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
110
+ "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
111
+ "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
112
+ "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
113
+ "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
114
+ "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
115
+ "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
116
+ "DPM2": (KDPM2DiscreteScheduler, {}),
117
+ "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
118
+ "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
119
+ "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
120
+ "Euler": (EulerDiscreteScheduler, {}),
121
+ "Euler a": (EulerAncestralDiscreteScheduler, {}),
122
+ "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
123
+ "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
124
+ "Heun": (HeunDiscreteScheduler, {}),
125
+ "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
126
+ "LMS": (LMSDiscreteScheduler, {}),
127
+ "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
128
+ "DDIM": (DDIMScheduler, {}),
129
+ "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
130
+ "DEIS": (DEISMultistepScheduler, {}),
131
+ "UniPC": (UniPCMultistepScheduler, {}),
132
+ "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
133
+ "PNDM": (PNDMScheduler, {}),
134
+ "Euler EDM": (EDMEulerScheduler, {}),
135
+ "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
136
+ "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
137
+ "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
138
+ "DDPM": (DDPMScheduler, {}),
139
+
140
+ "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
141
+ "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
142
+ "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
143
+ "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
144
+
145
+ "LCM": (LCMScheduler, {}),
146
+ "TCD": (TCDScheduler, {}),
147
+ "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
148
+ "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
149
+ "LCM Auto-Loader": (LCMScheduler, {}),
150
+ "TCD Auto-Loader": (TCDScheduler, {}),
151
+ }
152
+
153
+
154
+ def get_scheduler_config(name):
155
+ if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
156
+ return SCHEDULER_CONFIG_MAP[name]
157
+
158
+
159
+ def save_readme_md(dir, url):
160
+ orig_url = ""
161
+ orig_name = ""
162
+ if is_repo_name(url):
163
+ orig_name = url
164
+ orig_url = f"https://huggingface.co/{url}/"
165
+ elif "http" in url:
166
+ orig_name = url
167
+ orig_url = url
168
+ if orig_name and orig_url:
169
+ md = f"""---
170
+ license: other
171
+ tags:
172
+ - text-to-image
173
+ ---
174
+ Converted from [{orig_name}]({orig_url}).
175
+ """
176
+ else:
177
+ md = f"""---
178
+ license: other
179
+ tags:
180
+ - text-to-image
181
+ ---
182
+ """
183
+ path = str(Path(dir, "README.md"))
184
+ with open(path, mode='w', encoding="utf-8") as f:
185
+ f.write(md)
186
+
187
+
188
+ def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
189
+ if not lora_dict: return
190
+ a_list = []
191
+ w_list = []
192
+ for k, v in lora_dict.items():
193
+ new_lora_file = get_download_file(temp_dir, k, civitai_key)
194
+ if not new_lora_file or not Path(new_lora_file).exists():
195
+ print(f"LoRA not found: {k}")
196
+ continue
197
+ w_name = Path(new_lora_file).name
198
+ a_name = Path(new_lora_file).stem
199
+ pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
200
+ a_list.append(a_name)
201
+ w_list.append(v)
202
+ pipe.set_adapters(a_list, adapter_weights=w_list)
203
+ pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
204
+ pipe.unload_lora_weights()
205
+
206
+
207
+ def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}):
208
+ temp_dir = "."
209
+ new_file = get_download_file(temp_dir, url, civitai_key)
210
+ if not new_file:
211
+ print(f"Not found: {url}")
212
+ return
213
+ new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
214
+
215
+ pipe = None
216
+ if is_repo_name(new_file):
217
+ if half:
218
+ pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
219
+ else:
220
+ pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
221
+ else:
222
+ if half:
223
+ pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
224
+ else:
225
+ pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
226
+
227
+ new_vae_file = ""
228
+ if vae:
229
+ if is_repo_name(vae):
230
+ if half:
231
+ pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
232
+ else:
233
+ pipe.vae = AutoencoderKL.from_pretrained(vae)
234
+ else:
235
+ new_vae_file = get_download_file(temp_dir, vae, civitai_key)
236
+ if new_vae_file and half:
237
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
238
+ elif new_vae_file:
239
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
240
+
241
+ fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
242
+
243
+ sconf = get_scheduler_config(scheduler)
244
+ pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
245
+
246
+ if half:
247
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
248
+ else:
249
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
250
+
251
+ if Path(new_repo_name).exists():
252
+ save_readme_md(new_repo_name, url)
253
+
254
+
255
+ if __name__ == "__main__":
256
+ parser = argparse.ArgumentParser()
257
+
258
+ parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
259
+ parser.add_argument("--half", default=True, help="Save weights in half precision.")
260
+ parser.add_argument("--scheduler", default=None, type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
261
+ parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
262
+ parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
263
+ parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
264
+ parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
265
+ parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
266
+ parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
267
+ parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
268
+ parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
269
+ parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
270
+ parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
271
+ parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
272
+ parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
273
+ parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
274
+
275
+ args = parser.parse_args()
276
+ assert args.url is not None, "Must provide a URL!"
277
+
278
+ lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
279
+ if None in lora_dict.keys(): del lora_dict[None]
280
+
281
+ if args.loras and Path(args.loras).exists():
282
+ for p in Path(args.loras).glob('**/*.safetensors'):
283
+ lora_dict[str(p)] = 1.0
284
+
285
+ convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)
286
+
287
+
288
+ # Usage: python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors
289
+ # python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --scheduler "Euler a"
290
+ # python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --loras ./loras
convert_url_to_diffusers_sdxl_gr.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ import os
4
+ import torch
5
+ from diffusers import StableDiffusionXLPipeline, AutoencoderKL
6
+ import gradio as gr
7
+ # also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
8
+
9
+
10
+ def list_sub(a, b):
11
+ return [e for e in a if e not in b]
12
+
13
+
14
+ def is_repo_name(s):
15
+ import re
16
+ return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
17
+
18
+
19
+ def download_thing(directory, url, civitai_api_key=""):
20
+ url = url.strip()
21
+ if "drive.google.com" in url:
22
+ original_dir = os.getcwd()
23
+ os.chdir(directory)
24
+ os.system(f"gdown --fuzzy {url}")
25
+ os.chdir(original_dir)
26
+ elif "huggingface.co" in url:
27
+ url = url.replace("?download=true", "")
28
+ if "/blob/" in url:
29
+ url = url.replace("/blob/", "/resolve/")
30
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
31
+ else:
32
+ os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
33
+ elif "civitai.com" in url:
34
+ if "?" in url:
35
+ url = url.split("?")[0]
36
+ if civitai_api_key:
37
+ url = url + f"?token={civitai_api_key}"
38
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
39
+ else:
40
+ print("You need an API key to download Civitai models.")
41
+ else:
42
+ os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
43
+
44
+
45
+ def get_local_model_list(dir_path):
46
+ model_list = []
47
+ valid_extensions = ('.safetensors')
48
+ for file in Path(dir_path).glob("*"):
49
+ if file.suffix in valid_extensions:
50
+ file_path = str(Path(f"{dir_path}/{file.name}"))
51
+ model_list.append(file_path)
52
+ return model_list
53
+
54
+
55
+ def get_download_file(temp_dir, url, civitai_key):
56
+ if not "http" in url and is_repo_name(url) and not Path(url).exists():
57
+ print(f"Use HF Repo: {url}")
58
+ new_file = url
59
+ elif not "http" in url and Path(url).exists():
60
+ print(f"Use local file: {url}")
61
+ new_file = url
62
+ elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
63
+ print(f"File to download alreday exists: {url}")
64
+ new_file = f"{temp_dir}/{url.split('/')[-1]}"
65
+ else:
66
+ print(f"Start downloading: {url}")
67
+ before = get_local_model_list(temp_dir)
68
+ try:
69
+ download_thing(temp_dir, url.strip(), civitai_key)
70
+ except Exception:
71
+ print(f"Download failed: {url}")
72
+ return ""
73
+ after = get_local_model_list(temp_dir)
74
+ new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
75
+ if not new_file:
76
+ print(f"Download failed: {url}")
77
+ return ""
78
+ print(f"Download completed: {url}")
79
+ return new_file
80
+
81
+
82
+ from diffusers import (
83
+ DPMSolverMultistepScheduler,
84
+ DPMSolverSinglestepScheduler,
85
+ KDPM2DiscreteScheduler,
86
+ EulerDiscreteScheduler,
87
+ EulerAncestralDiscreteScheduler,
88
+ HeunDiscreteScheduler,
89
+ LMSDiscreteScheduler,
90
+ DDIMScheduler,
91
+ DEISMultistepScheduler,
92
+ UniPCMultistepScheduler,
93
+ LCMScheduler,
94
+ PNDMScheduler,
95
+ KDPM2AncestralDiscreteScheduler,
96
+ DPMSolverSDEScheduler,
97
+ EDMDPMSolverMultistepScheduler,
98
+ DDPMScheduler,
99
+ EDMEulerScheduler,
100
+ TCDScheduler,
101
+ )
102
+
103
+
104
+ SCHEDULER_CONFIG_MAP = {
105
+ "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
106
+ "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
107
+ "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
108
+ "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
109
+ "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
110
+ "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
111
+ "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
112
+ "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
113
+ "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
114
+ "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
115
+ "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
116
+ "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
117
+ "DPM2": (KDPM2DiscreteScheduler, {}),
118
+ "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
119
+ "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
120
+ "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
121
+ "Euler": (EulerDiscreteScheduler, {}),
122
+ "Euler a": (EulerAncestralDiscreteScheduler, {}),
123
+ "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
124
+ "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
125
+ "Heun": (HeunDiscreteScheduler, {}),
126
+ "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
127
+ "LMS": (LMSDiscreteScheduler, {}),
128
+ "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
129
+ "DDIM": (DDIMScheduler, {}),
130
+ "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
131
+ "DEIS": (DEISMultistepScheduler, {}),
132
+ "UniPC": (UniPCMultistepScheduler, {}),
133
+ "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
134
+ "PNDM": (PNDMScheduler, {}),
135
+ "Euler EDM": (EDMEulerScheduler, {}),
136
+ "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
137
+ "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
138
+ "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
139
+ "DDPM": (DDPMScheduler, {}),
140
+
141
+ "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
142
+ "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
143
+ "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
144
+ "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
145
+
146
+ "LCM": (LCMScheduler, {}),
147
+ "TCD": (TCDScheduler, {}),
148
+ "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
149
+ "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
150
+ "LCM Auto-Loader": (LCMScheduler, {}),
151
+ "TCD Auto-Loader": (TCDScheduler, {}),
152
+ }
153
+
154
+
155
+ def get_scheduler_config(name):
156
+ if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
157
+ return SCHEDULER_CONFIG_MAP[name]
158
+
159
+
160
+ def save_readme_md(dir, url):
161
+ orig_url = ""
162
+ orig_name = ""
163
+ if is_repo_name(url):
164
+ orig_name = url
165
+ orig_url = f"https://huggingface.co/{url}/"
166
+ elif "http" in url:
167
+ orig_name = url
168
+ orig_url = url
169
+ if orig_name and orig_url:
170
+ md = f"""---
171
+ license: other
172
+ tags:
173
+ - text-to-image
174
+ ---
175
+ Converted from [{orig_name}]({orig_url}).
176
+ """
177
+ else:
178
+ md = f"""---
179
+ license: other
180
+ tags:
181
+ - text-to-image
182
+ ---
183
+ """
184
+ path = str(Path(dir, "README.md"))
185
+ with open(path, mode='w', encoding="utf-8") as f:
186
+ f.write(md)
187
+
188
+
189
+ def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key=""):
190
+ if not lora_dict: return
191
+ a_list = []
192
+ w_list = []
193
+ for k, v in lora_dict.items():
194
+ new_lora_file = get_download_file(temp_dir, k, civitai_key)
195
+ if not new_lora_file or not Path(new_lora_file).exists():
196
+ print(f"LoRA not found: {k}")
197
+ continue
198
+ w_name = Path(new_lora_file).name
199
+ a_name = Path(new_lora_file).stem
200
+ pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
201
+ a_list.append(a_name)
202
+ w_list.append(v)
203
+ pipe.set_adapters(a_list, adapter_weights=w_list)
204
+ pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
205
+ pipe.unload_lora_weights()
206
+
207
+
208
+ def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}, progress=gr.Progress(track_tqdm=True)):
209
+ progress(0, desc="Start converting...")
210
+ temp_dir = "."
211
+ new_file = get_download_file(temp_dir, url, civitai_key)
212
+ if not new_file:
213
+ print(f"Not found: {url}")
214
+ return ""
215
+ new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
216
+
217
+ pipe = None
218
+ if is_repo_name(new_file):
219
+ if half:
220
+ pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
221
+ else:
222
+ pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
223
+ else:
224
+ if half:
225
+ pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
226
+ else:
227
+ pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
228
+
229
+ new_vae_file = ""
230
+ if vae:
231
+ if is_repo_name(vae):
232
+ if half:
233
+ pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
234
+ else:
235
+ pipe.vae = AutoencoderKL.from_pretrained(vae)
236
+ else:
237
+ new_vae_file = get_download_file(temp_dir, vae, civitai_key)
238
+ if new_vae_file and half:
239
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
240
+ elif new_vae_file:
241
+ pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
242
+
243
+ fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
244
+
245
+ sconf = get_scheduler_config(scheduler)
246
+ pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
247
+
248
+ if half:
249
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
250
+ else:
251
+ pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
252
+
253
+ if Path(new_repo_name).exists():
254
+ save_readme_md(new_repo_name, url)
255
+
256
+ progress(1, desc="Converted.")
257
+ return new_repo_name
258
+
259
+
260
+ def is_repo_exists(repo_id):
261
+ from huggingface_hub import HfApi
262
+ api = HfApi()
263
+ try:
264
+ if api.repo_exists(repo_id=repo_id): return True
265
+ else: return False
266
+ except Exception as e:
267
+ print(f"Error: Failed to connect {repo_id}. ")
268
+ return True # for safe
269
+
270
+
271
+ def create_diffusers_repo(new_repo_id, diffusers_folder, progress=gr.Progress(track_tqdm=True)):
272
+ from huggingface_hub import HfApi
273
+ import os
274
+ hf_token = os.environ.get("HF_TOKEN")
275
+ api = HfApi()
276
+ try:
277
+ progress(0, desc="Start uploading...")
278
+ api.create_repo(repo_id=new_repo_id, token=hf_token)
279
+ for path in Path(diffusers_folder).glob("*"):
280
+ if path.is_dir():
281
+ api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
282
+ elif path.is_file():
283
+ api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
284
+ progress(1, desc="Uploaded.")
285
+ url = f"https://huggingface.co/{new_repo_id}"
286
+ except Exception as e:
287
+ print(f"Error: Failed to upload to {new_repo_id}. ")
288
+ return ""
289
+ return url
290
+
291
+
292
+ def convert_url_to_diffusers_repo(dl_url, new_repo_id, hf_token, civitai_key="", repo_urls=[], half=True, vae=None,
293
+ scheduler="Euler a", lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
294
+ lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
295
+ if hf_token and not os.environ.get("HF_TOKEN"): os.environ['HF_TOKEN'] = hf_token
296
+ if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
297
+ if not is_repo_name(new_repo_id):
298
+ print(f"Invalid repo name: {new_repo_id}")
299
+ progress(1, desc=f"Invalid repo name: {new_repo_id}")
300
+ return ""
301
+ if is_repo_exists(new_repo_id):
302
+ print(f"Repo already exists: {new_repo_id}")
303
+ progress(1, desc=f"Repo already exists: {new_repo_id}")
304
+ return ""
305
+ lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
306
+ if None in lora_dict.keys(): del lora_dict[None]
307
+ new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, half, vae, scheduler, lora_dict)
308
+ if not new_path: return ""
309
+ repo_url = create_diffusers_repo(new_repo_id, new_path)
310
+ if not repo_urls: repo_urls = []
311
+ repo_urls.append(repo_url)
312
+ md = "Your new repo:<br>"
313
+ for u in repo_urls:
314
+ md += f"[{str(u).split('/')[-2]}{str(u).split('/')[-1]}]({str(u)})<br>"
315
+ return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
316
+
317
+
318
+ if __name__ == "__main__":
319
+ parser = argparse.ArgumentParser()
320
+
321
+ parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
322
+ parser.add_argument("--half", default=True, help="Save weights in half precision.")
323
+ parser.add_argument("--scheduler", default=None, type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
324
+ parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
325
+ parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
326
+ parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
327
+ parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
328
+ parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
329
+ parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
330
+ parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
331
+ parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
332
+ parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
333
+ parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
334
+ parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
335
+ parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
336
+ parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
337
+
338
+ args = parser.parse_args()
339
+ assert args.url is not None, "Must provide a URL!"
340
+
341
+ lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
342
+ if None in lora_dict.keys(): del lora_dict[None]
343
+
344
+ if args.loras and Path(args.loras).exists():
345
+ for p in Path(args.loras).glob('**/*.safetensors'):
346
+ lora_dict[str(p)] = 1.0
347
+
348
+ convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub
2
+ safetensors
3
+ transformers
4
+ accelerate
5
+ git+https://github.com/huggingface/diffusers
6
+ pytorch_lightning
7
+ peft
8
+ aria2
9
+ gdown