davanstrien's picture
davanstrien HF staff
reqs and app
64cd544
raw
history blame
4.62 kB
import os
import random
import shutil
import tempfile
import zipfile
import gradio as gr
from huggingface_hub import HfApi
from pdf2image import convert_from_path
from PyPDF2 import PdfReader
def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
progress(0, desc="Starting conversion")
all_images = []
for pdf_file in progress.tqdm(pdf_files, desc="Converting PDFs"):
pdf_path = pdf_file.name
pdf = PdfReader(pdf_path)
total_pages = len(pdf.pages)
# Determine the number of pages to convert
pages_to_convert = (
total_pages if sample_size == 0 else min(sample_size, total_pages)
)
# Select random pages if sampling
if sample_size > 0 and sample_size < total_pages:
selected_pages = sorted(
random.sample(range(1, total_pages + 1), pages_to_convert)
)
else:
selected_pages = range(1, total_pages + 1)
# Convert selected PDF pages to images
for page_num in selected_pages:
images = convert_from_path(
pdf_path, first_page=page_num, last_page=page_num
)
for image in images:
image_path = os.path.join(
temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num}.jpg"
)
image.save(image_path, "JPEG")
all_images.append(image_path)
return all_images, f"Saved {len(all_images)} images to temporary directory"
def process_pdfs(
pdf_files,
sample_size,
hf_repo,
oauth_token: gr.OAuthToken | None,
progress=gr.Progress(),
):
if not pdf_files:
return None, None, "No PDF files uploaded."
if oauth_token is None:
gr.Info("Please log in to upload to Hugging Face.")
return (
None,
None,
"Not logged in to Hugging Face, please log in to upload to a Hugging Face dataset.",
)
try:
temp_dir = tempfile.mkdtemp()
images_dir = os.path.join(temp_dir, "images")
os.makedirs(images_dir)
images, message = pdf_to_images(pdf_files, sample_size, images_dir)
# Create a zip file of the images
zip_path = os.path.join(temp_dir, "converted_images.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
progress(0, desc="Zipping images")
for image in progress.tqdm(images, desc="Zipping images"):
zipf.write(image, os.path.basename(image))
if hf_repo:
try:
hf_api = HfApi(token=oauth_token.token)
hf_api.create_repo(
hf_repo,
repo_type="dataset",
)
hf_api.upload_folder(
folder_path=images_dir,
repo_id=hf_repo,
repo_type="dataset",
path_in_repo="images",
)
message += f"\nUploaded images to Hugging Face repo: {hf_repo}/images"
except Exception as e:
message += f"\nFailed to upload to Hugging Face: {str(e)}"
return images, zip_path, message
except Exception as e:
if "temp_dir" in locals():
shutil.rmtree(temp_dir)
return None, None, f"An error occurred: {str(e)}"
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# PDF to Image Converter")
gr.Markdown(
"Upload PDF(s), convert pages to images, and optionally upload them to a Hugging Face repo. If a sample size is specified, random pages will be selected."
)
with gr.Row():
gr.LoginButton(size="sm")
with gr.Row():
pdf_files = gr.File(
file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"]
)
with gr.Row():
sample_size = gr.Number(
value=None,
label="Number of sample pages (0 will return all pages)",
)
hf_repo = gr.Textbox(
label="Hugging Face Repo", placeholder="username/repo-name"
)
output_gallery = gr.Gallery(label="Converted Images")
status_text = gr.Markdown(label="Status")
download_button = gr.File(label="Download Converted Images")
submit_button = gr.Button("Process PDFs")
submit_button.click(
process_pdfs,
inputs=[pdf_files, sample_size, hf_repo],
outputs=[output_gallery, download_button, status_text],
)
# Launch the app
demo.launch(debug=True)