joytag / Models.py
fancyfeast
Bugfix
df9e86f
import json
from pathlib import Path
from typing import Optional
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from transformers.activations import QuickGELUActivation
import math
from einops.layers.torch import Rearrange
import einops
MODEL_CONFIGS = {
# Custom models trained from scratch
# "Standard" definitions:
# name | layers | width | heads
# B | 12 | 768 | 12
# L | 24 | 1024 | 16
# H | 32 | 1280 | 16
# G | 48 | 1664 | 16
# e | 56 | 1792 | 16
# 22 | 48 | 6144 | 48
# B/16, 224, PaLM, GELU
'CustomTest6': {
'class': 'CLIPLikeModel',
'embedding_dim': 768,
'num_attention_heads': 12,
'activation_cls': nn.GELU,
'num_channels': 3,
'patch_size': 16,
'use_palm_alt': True,
'num_layers': 12,
'use_mha_alt': False,
'good_dropout': False,
},
# GAP head + Sinusoidal positional embeddings + 448 image size
'CustomTest18': {
'class': 'CLIPLikeModel',
'embedding_dim': 768,
'num_attention_heads': 12,
'activation_cls': nn.GELU,
'num_channels': 3,
'patch_size': 16,
'use_palm_alt': True,
'num_layers': 12,
'use_mha_alt': False,
'good_dropout': False,
'use_gap_head': True,
'sine_positional_embeddings': True,
},
# SW Model + B/16 + ASL + 448 image size
# cutout_max_pct = 0
# mixup_alpha = 0.8
# noise_level = 2
# random_resize_method = true
# total_labels = 6549
'SWModel1': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': False},
# Sinusoidal positional embeddings
'SWModel2': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
# Sinusoidal positional embeddings + 224 image size + L/14
'SWModel3': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
# Sinusoidal positional embeddings + 224 image size + G/14
'SWModel4': {'class': 'ViT', 'num_blocks': 48, 'patch_size': 14, 'd_model': 1664, 'mlp_dim': 1664*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
# Sinusoidal positional embeddings + focal loss
'SWModel5': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel6': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel7': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel8': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel9': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel10': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel11': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0, 'use_sine': True},
# Trying head_mean_after
'SWModel12': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'head_mean_after': True},
# Fat boy
'SWModel13': {'class': 'ViT', 'num_blocks': 6, 'patch_size': 16, 'd_model': 1536, 'mlp_dim': 1536*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
# L/14
'SWModel14': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel15': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-5, 'use_sine': True},
'SWModel16': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel16f': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel22': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.20, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel25': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 16, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True, 'cnn_stem': 'conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=1024;ln;relu;conv:c=1024,s=1,k=1,p=0'},
# CNN stem
'SWModel18': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=256;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1'},
'SWModel19': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=128,s=1;bn;relu;conv:c=256;bn;relu;conv:c=256,s=1;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1,p=0'},
'SWModel20': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
'SWModel21': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;gelu;conv:c=128;ln;gelu;conv:c=256;ln;gelu;conv:c=512;ln;gelu;conv:c=768,s=1,k=1,p=0'},
'SWModel23': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
'SWModel24': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
# H/14
'SWModel17': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel26': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True},
}
class VisionModel(nn.Module):
image_size: int
n_tags: int
def __init__(self, image_size: int, n_tags: int):
super().__init__()
self.image_size = image_size
self.n_tags = n_tags
@staticmethod
def load_model(path: Path | str, device: str | None = None) -> 'VisionModel':
"""
Load a model from a directory.
:param path: The directory containing the model.
:return: The model, the image size, and the number of tags.
"""
with open(Path(path) / 'config.json', 'r') as f:
config = json.load(f)
if (Path(path) / 'model.safetensors').exists():
from safetensors.torch import load_file
resume = load_file(Path(path) / 'model.safetensors', device='cpu')
else:
resume = torch.load(Path(path) / 'model.pt', map_location=torch.device('cpu'))['model']
model_classes = VisionModel.__subclasses__()
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class'])
model = model_cls(**{k: v for k, v in config.items() if k != 'class'})
model.load(resume)
if device is not None:
model = model.to(device)
return model
@staticmethod
def from_config(config: dict) -> 'VisionModel':
model_classes = VisionModel.__subclasses__()
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class'])
return model_cls(**{k: v for k, v in config.items() if k != 'class'})
def get_optimized_parameters(self, lr: float):
raise NotImplementedError
def save(self):
raise NotImplementedError
def load(self, state_dict):
raise NotImplementedError
def basic_calculate_loss(preds: dict[str, torch.Tensor], batch: dict, pos_weight: torch.Tensor | None, loss_type: str):
def asl_helper(preds, target):
p = F.softmax(preds, dim=1)
xs_pos = p.clamp(min=1e-6)
xs_neg = (1 - p).clamp(min=1e-6)
los_pos = torch.log(torch.gather(xs_pos, 1, target.unsqueeze(1))).sum()
los_neg = torch.log(xs_neg)
los_neg = los_neg.sum() - torch.gather(los_neg, 1, target.unsqueeze(1)).sum()
loss = los_pos + los_neg
return -loss
if loss_type == "ce":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'])
elif loss_type == "weighted":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight)
elif loss_type == "focal":
gamma = 2
p = torch.sigmoid(preds['tags'])
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none')
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags'])
loss = ce_loss * ((1 - p_t) ** gamma)
loss = loss.mean()
elif loss_type == "focal2":
gamma = 2
p = torch.sigmoid(preds['tags'])
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none')
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags'])
loss = ce_loss * ((1 - p_t) ** gamma) * 256
loss = loss.mean()
elif loss_type == "asl":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = los_pos + los_neg
loss = -loss.sum()
# Rating
loss = loss + asl_helper(preds['rating'], batch['rating'])
# Score
loss = loss + asl_helper(preds['score'], batch['score'])
elif loss_type == "asl2":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = -los_pos - los_neg
loss = loss.sum()
elif loss_type == "asl3":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = -los_pos - los_neg
loss = loss.mean()
elif loss_type == "asl4":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = -los_pos - los_neg
loss = loss.mean() * 128
elif loss_type == "asl5":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 128
elif loss_type == "asl6":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 256
elif loss_type == "asl7":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 2
else:
raise ValueError(f"Invalid loss type: {loss_type}")
return loss
class CLIPMlp(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, activation_cls):
super().__init__()
self.activation_fn = activation_cls()
self.fc1 = nn.Linear(hidden_size, intermediate_size)
self.fc2 = nn.Linear(intermediate_size, hidden_size)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class FastCLIPAttention2(nn.Module):
"""Fast Attention module for CLIP-like. This is NOT a drop-in replacement for CLIPAttention, since it adds additional flexibility. Mainly uses xformers."""
def __init__(self, hidden_size: int, out_dim: int, num_attention_heads: int, out_seq_len: Optional[int] = None, norm_qk: bool = False):
super().__init__()
self.out_seq_len = out_seq_len
self.embed_dim = hidden_size
self.out_dim = out_dim
self.norm_qk = norm_qk
self.num_heads = num_attention_heads
self.head_dim = hidden_size // num_attention_heads
assert self.head_dim * num_attention_heads == self.embed_dim, "embed_dim must be divisible by num_attention_heads"
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.kv_proj = nn.Linear(self.embed_dim, self.embed_dim * 2)
self.out_proj = nn.Linear(self.embed_dim, self.out_dim)
if self.norm_qk:
self.query_norm = nn.LayerNorm(self.embed_dim)
self.key_norm = nn.LayerNorm(self.embed_dim)
#def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous()
def forward(self, query_states: torch.Tensor, kv_states: torch.Tensor) -> torch.Tensor:
bsz, src_len, embed_dim = kv_states.size()
if self.out_seq_len is not None:
tgt_len = self.out_seq_len
else:
tgt_len = src_len
kv_states = self.kv_proj(kv_states) # (bsz, src_len, embed_dim * 2)
q_states = self.q_proj(query_states[:, :tgt_len]) # (bsz, tgt_len, embed_dim)
# NOTE: It is not clear if LayerNorm should be applied to the embed_dim, or to the head_dim
if self.norm_qk:
q_states = self.query_norm(q_states).type(q_states.dtype)
k_states = self.key_norm(kv_states[:, :, :embed_dim]).type(kv_states.dtype)
v_states = kv_states[:, :, embed_dim:]
else:
k_states = kv_states[:, :, :embed_dim]
v_states = kv_states[:, :, embed_dim:]
q_states = q_states.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, tgt_len, head_dim)
k_states = k_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim)
v_states = v_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim)
# Performs scale of query_states, attention, and softmax
with torch.backends.cuda.sdp_kernel(enable_math=False):
x = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim)
x = x.transpose(1, 2).contiguous().view(bsz, tgt_len, embed_dim) # (bsz, tgt_len, embed_dim)
# Projection
x = self.out_proj(x) # (bsz, tgt_len, out_dim)
return x
class SkipInit(nn.Module):
def __init__(self, hidden_size: int, channel_wise: bool, init_scale: float):
super().__init__()
self.hidden_size = hidden_size
self.channel_wise = channel_wise
self.init_scale = init_scale
if self.channel_wise:
self.scale = nn.Parameter(torch.ones(hidden_size) * init_scale)
else:
self.scale = nn.Parameter(torch.tensor(init_scale))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x * self.scale
class FastCLIPEncoderLayer(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
out_seq_len: Optional[int],
activation_cls = QuickGELUActivation,
use_palm_alt: bool = False,
norm_qk: bool = False,
skip_init: Optional[float] = None,
stochastic_depth: Optional[float] = None,
):
super().__init__()
self.use_palm_alt = use_palm_alt
self.stochastic_depth = stochastic_depth
self.self_attn = FastCLIPAttention2(
hidden_size=hidden_size,
out_dim=hidden_size,
num_attention_heads=num_attention_heads,
out_seq_len=out_seq_len,
norm_qk=norm_qk,
)
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls)
self.layer_norm1 = nn.LayerNorm(hidden_size)
if not use_palm_alt:
self.layer_norm2 = nn.LayerNorm(hidden_size)
if skip_init is not None:
self.attn_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init)
self.mlp_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init)
else:
self.attn_skip_init = nn.Identity()
self.mlp_skip_init = nn.Identity()
def forward(self, hidden_states: torch.Tensor):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
if not self.use_palm_alt:
hidden_states = self.self_attn(query_states=hidden_states, kv_states=hidden_states)
hidden_states = self.attn_skip_init(hidden_states)
hidden_states = hidden_states + residual[:, :hidden_states.size(1)]
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.mlp_skip_init(hidden_states)
hidden_states = hidden_states + residual
else:
# An alternative implementation inspired by the PALM paper
# By performing the attention and MLP in parallel it's possible to fuse the linear projections of the attention and MLP layers
# We don't do that here yet, but that supposedly improves efficiency without hurting performance
attn = self.self_attn(query_states=hidden_states, kv_states=hidden_states)
attn = self.attn_skip_init(attn)
mlp = self.mlp(hidden_states[:, :attn.size(1)])
mlp = self.mlp_skip_init(mlp)
if self.stochastic_depth is not None:
attn = torchvision.ops.stochastic_depth(attn, self.stochastic_depth, mode='row', training=self.training)
mlp = torchvision.ops.stochastic_depth(mlp, self.stochastic_depth, mode='row', training=self.training)
hidden_states = residual[:, :attn.size(1)] + attn + mlp
return hidden_states
def sinusoidal_position_embedding(width: int, height: int, depth: int, dtype, device, temperature = 10000):
"""
Sinusoidal position embedding. Returns a flat tensor of shape (h * w, d).
"""
assert depth % 4 == 0, "Embedding dimension must be divisible by 4."
y, x = torch.meshgrid(torch.arange(height, device=device), torch.arange(width, device=device), indexing="ij")
omega = torch.arange(depth // 4, device=device) / (depth // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
embedding = torch.cat([x.sin(), x.cos(), y.sin(), y.cos()], dim=1)
return embedding.type(dtype)
class CLIPEmbeddingLayer(nn.Module):
def __init__(self, hidden_size: int, num_channels: int, image_size: int, patch_size: int, patch_dropout: float = 0.0, good_dropout: bool = False, dpn: bool = False, sine_positional_embeddings: bool = False):
super().__init__()
assert image_size % patch_size == 0, "Image dimensions must be divisible by the patch size."
seq_len = (image_size // patch_size) ** 2
self.patch_dropout = patch_dropout
self.hidden_size = hidden_size
self.good_dropout = good_dropout
self.dpn = dpn
self.sine_positional_embeddings = sine_positional_embeddings
self.patch_size = patch_size
self.patch_embeddings = nn.Conv2d(
in_channels=num_channels,
out_channels=hidden_size,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
if not self.sine_positional_embeddings:
self.positional_embeddings = nn.Embedding(seq_len, hidden_size)
self.register_buffer("position_ids", torch.arange(seq_len))
if self.dpn:
self.to_patch_embeddings = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size),
nn.LayerNorm(3 * patch_size * patch_size),
nn.Linear(3 * patch_size * patch_size, hidden_size),
nn.LayerNorm(hidden_size),
)
else:
self.to_patch_embeddings = nn.Conv2d(
in_channels=num_channels,
out_channels=hidden_size,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
B, C, H, W = pixel_values.shape
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
if self.dpn:
patches = self.to_patch_embeddings(pixel_values)
else:
patches = self.to_patch_embeddings(pixel_values)
patches = patches.flatten(2).transpose(1, 2)
seq_len = patches.shape[1]
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len))
if self.sine_positional_embeddings:
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.hidden_size, pixel_values.dtype, pixel_values.device)
else:
position_embeddings = self.positional_embeddings(self.position_ids)
if patch_dropout == seq_len or not self.training:
embeddings = patches + position_embeddings
elif self.good_dropout:
# Pick random patches to drop out
# The "good_dropout" variant uses random permutations for each batch item, but is slightly slower and involves more code
# The below method is a nice trick to generate a batch of random permutations.
# Torch (as of 1.13) doesn't have a built-in function to do this, and a for loop of torch.randperm is slow.
# Based on some benchmarks I measured the generation of the mask and the fetching to be only 50% slower than the non-"good_dropout" variant.
# And the time taken here is only a fraction of the time spent performing the embedding convolution.
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len)
patch_mask = torch.rand(B, seq_len, device=patches.device)
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
patch_mask = torch.argsort(patch_mask, dim=1)
# Truncate
patch_mask = patch_mask[:, :patch_dropout]
embeddings = patches.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, self.hidden_size)) + position_embeddings[patch_mask]
else:
# The non-"good_dropout" variant uses a single random permutation for all batch items, but is faster and uses less code
indices = torch.randperm(seq_len, device=pixel_values.device)[:patch_dropout]
embeddings = patches[:, indices, :] + position_embeddings[indices.expand(1, -1)]
return embeddings
class MHAPoolingHead(nn.Module):
def __init__(self, hidden_size: int, num_attention_heads: int, activation_cls, out_dim: int, alt_style: bool, norm_qk: bool):
super().__init__()
self.out_dim = out_dim if not alt_style else hidden_size
self.probe = nn.Parameter(torch.randn(hidden_size))
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls)
self.layer_norm = nn.LayerNorm(hidden_size)
self.pooling_head = nn.Linear(hidden_size, 1)
self.self_attn = FastCLIPAttention2(
hidden_size=hidden_size,
out_dim=self.out_dim,
num_attention_heads=num_attention_heads,
out_seq_len=1,
norm_qk=norm_qk,
)
self.mlp = CLIPMlp(self.out_dim, 4 * self.out_dim, activation_cls)
self.layer_norm1 = nn.LayerNorm(hidden_size)
self.layer_norm2 = nn.LayerNorm(self.out_dim)
if alt_style:
self.final_proj = nn.Linear(hidden_size, out_dim)
else:
self.final_proj = nn.Identity()
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.layer_norm1(hidden_states)
query_states = self.probe.unsqueeze(0).unsqueeze(0).expand(hidden_states.size(0), 1, -1)
hidden_states = self.self_attn(query_states=query_states, kv_states=hidden_states)
# We don't use a residual connection here because the out_dim is different from the hidden_size
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = hidden_states + residual
hidden_states = self.final_proj(hidden_states)
return hidden_states.squeeze(1)
class GAPHead(nn.Module):
def __init__(self, hidden_size: int, out_dim: int):
super().__init__()
self.norm = nn.LayerNorm(hidden_size)
self.proj = nn.Linear(hidden_size, out_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.mean(dim=1)
x = self.norm(x)
x = self.proj(x)
return x
class CLIPLikeModel(VisionModel):
def __init__(
self,
n_tags: int,
embedding_dim: int,
num_attention_heads: int,
activation_cls,
num_channels: int,
image_size: int,
patch_size: int,
patch_dropout: float,
use_palm_alt: bool,
num_layers: int,
use_mha_alt: bool,
loss_type: str,
good_dropout: bool=False,
dpn: bool=False,
sine_positional_embeddings: bool=False,
norm_qk: bool = False,
no_wd_bias: bool = False,
use_gap_head: bool = False,
skip_init: Optional[float] = None,
stochastic_depth: Optional[float] = None,
):
super().__init__(image_size, n_tags)
out_dim = n_tags
self.n_tags = n_tags
self.loss_type = loss_type
self.no_wd_bias = no_wd_bias
stochastic_depth_space = torch.linspace(0, stochastic_depth, num_layers) if stochastic_depth is not None else None
self.embedding_layer = CLIPEmbeddingLayer(embedding_dim, num_channels, image_size, patch_size, patch_dropout, good_dropout, dpn, sine_positional_embeddings)
self.pre_layer_norm = nn.LayerNorm(embedding_dim)
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
hidden_size=embedding_dim,
num_attention_heads=num_attention_heads,
out_seq_len=None,
activation_cls=activation_cls,
use_palm_alt=use_palm_alt,
norm_qk=norm_qk,
skip_init=skip_init,
stochastic_depth=stochastic_depth_space[i].item() if stochastic_depth_space is not None else None,
) for i in range(num_layers)])
if use_gap_head:
self.pooling_head = GAPHead(embedding_dim, out_dim)
else:
self.pooling_head = MHAPoolingHead(embedding_dim, num_attention_heads, activation_cls, out_dim, use_mha_alt, norm_qk=norm_qk)
def forward(self, batch):
hidden_states = self.embedding_layer(batch['image'])
hidden_states = self.pre_layer_norm(hidden_states)
for layer in self.encoder_layers:
hidden_states = layer(hidden_states)
preds = self.pooling_head(hidden_states)
result = {
'tags': preds,
}
return result
def calculate_loss(self, preds, batch, pos_weight):
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type)
def get_optimized_parameters(self, lr: float):
if self.no_wd_bias:
return self.get_optimized_parameters_no_wd_bias()
else:
return self.parameters()
def get_optimized_parameters_no_wd_bias(self):
decay = []
no_decay = []
for name, param in self.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name.endswith(".bias"):
no_decay.append(param)
print(f'No decay: {name}')
else:
decay.append(param)
return [
{'params': decay},
{'params': no_decay, 'weight_decay': 0.},
]
def save(self):
return self.state_dict()
def load(self, state_dict):
self.load_state_dict(state_dict)
class MaskedAutoEncoderViT(nn.Module):
def __init__(
self,
n_tags: int,
embedding_dim: int,
num_attention_heads: int,
activation_cls,
num_channels: int,
image_size: int,
patch_size: int,
num_layers: int,
loss_type: str,
sine_positional_embeddings: bool=False,
decoder_embedding_dim: int = 512,
decoder_num_attention_heads: int = 8,
decoder_num_layers: int = 6,
decoder_force_projection: bool = False,
masking_ratio: float = 0.75,
mae_loss_weight: float = 1.0,
mae_normalize_targets: bool = False,
mae_post_norm: bool = False,
):
super().__init__()
self.n_tags = n_tags
self.seq_len = (image_size // patch_size) ** 2
self.embedding_dim = embedding_dim
self.decoder_embedding_dim = decoder_embedding_dim
self.sine_positional_embeddings = sine_positional_embeddings
self.image_size = image_size
self.patch_size = patch_size
self.masking_ratio = masking_ratio
self.loss_type = loss_type
self.mae_loss_weight = mae_loss_weight
self.mae_normalize_targets = mae_normalize_targets
if not self.sine_positional_embeddings:
self.positional_embeddings = nn.Embedding(self.seq_len, embedding_dim)
self.decoder_positional_embeddings = nn.Embedding(self.seq_len, decoder_embedding_dim)
self.register_buffer("position_ids", torch.arange(self.seq_len))
self.to_patches = Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size)
self.patch_embedder = nn.Linear(num_channels * patch_size * patch_size, embedding_dim)
# Encoder
self.pre_layer_norm = nn.LayerNorm(embedding_dim)
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
hidden_size=embedding_dim,
num_attention_heads=num_attention_heads,
out_seq_len=None,
activation_cls=activation_cls,
use_palm_alt=True,
norm_qk=False,
skip_init=None,
) for _ in range(num_layers)])
# Head for classification
self.pooling_head = GAPHead(embedding_dim, n_tags)
# Decoder
if embedding_dim != decoder_embedding_dim or decoder_force_projection:
self.encoder_to_decoder_proj = nn.Linear(embedding_dim, decoder_embedding_dim)
else:
self.encoder_to_decoder_proj = nn.Identity()
self.decoder_pre_layer_norm = nn.LayerNorm(decoder_embedding_dim)
self.decoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
hidden_size=decoder_embedding_dim,
num_attention_heads=decoder_num_attention_heads,
out_seq_len=None,
activation_cls=activation_cls,
use_palm_alt=True,
norm_qk=False,
skip_init=None,
) for _ in range(decoder_num_layers)])
if mae_post_norm:
self.decoder_to_pixel_values = nn.Sequential(
nn.LayerNorm(decoder_embedding_dim),
nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size)
)
else:
self.decoder_to_pixel_values = nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size)
self.mask_token = nn.Parameter(torch.zeros(decoder_embedding_dim))
torch.nn.init.normal_(self.mask_token, std=0.02)
def forward(self, batch):
pixel_values = batch['image']
device = pixel_values.device
B, C, H, W = pixel_values.shape
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
# Convert image to patches (B, seq_len, C * patch_size * patch_size)
patches = self.to_patches(pixel_values)
seq_len = patches.shape[1]
num_masked = int(self.masking_ratio * seq_len)
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
# From this we can get the masked and unmasked indices
patch_mask = torch.rand(B, seq_len, device=device)
patch_mask = torch.argsort(patch_mask, dim=1)
masked_indices, unmasked_indices = patch_mask[:, :num_masked], patch_mask[:, num_masked:]
batch_range = torch.arange(B, device=device)[:, None]
# Masked and unmasked patches
unmasked_patches = patches[batch_range, unmasked_indices]
masked_patches = patches[batch_range, masked_indices]
# Embed unmasked patches for the encoder (B, seq_len, embedding_dim)
tokens = self.patch_embedder(unmasked_patches)
if self.sine_positional_embeddings:
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.embedding_dim, pixel_values.dtype, device)
decoder_position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.decoder_embedding_dim, pixel_values.dtype, device)
else:
position_embeddings = self.positional_embeddings(self.position_ids)
decoder_position_embeddings = self.decoder_positional_embeddings(self.position_ids)
# Add position embeddings
tokens = tokens + position_embeddings[unmasked_indices]
# Run the encoder
encoded_tokens = self.pre_layer_norm(tokens)
for layer in self.encoder_layers:
encoded_tokens = layer(encoded_tokens)
# Label predictions
if self.training:
preds = self.pooling_head(encoded_tokens)
else:
# During inference, classify using the entire image
# But we'll do the usual for the MAE part, just so we can see how MAE is performing during validation
tokens = self.patch_embedder(patches)
tokens = tokens + position_embeddings
tokens = self.pre_layer_norm(tokens)
for layer in self.encoder_layers:
tokens = layer(tokens)
preds = self.pooling_head(tokens)
# Projection for the decoder and position embeddings
decoder_tokens = self.encoder_to_decoder_proj(encoded_tokens)
decoder_tokens = decoder_tokens + decoder_position_embeddings[unmasked_indices]
# Fill in the masked patches
mask_tokens = einops.repeat(self.mask_token, 'd -> b n d', b = B, n = num_masked)
mask_tokens = mask_tokens + decoder_position_embeddings[masked_indices]
decoder_tokens = torch.cat([decoder_tokens, mask_tokens], dim=1)
# Run the decoder
decoded_tokens = self.decoder_pre_layer_norm(decoder_tokens)
for layer in self.decoder_layers:
decoded_tokens = layer(decoded_tokens)
# Only predict the masked patches
# All the masked patches are at the end of the sequence
decoded_tokens = decoded_tokens[:, -num_masked:]
pred_pixel_values = self.decoder_to_pixel_values(decoded_tokens)
# Calculate the mae loss
if self.mae_normalize_targets:
# Normalize each patch by its mean and variance. The ViCHA paper says this provides better results
means = masked_patches.mean(dim=-1, keepdim=True)
vars = masked_patches.var(dim=-1, keepdim=True)
target = (masked_patches - means) / (vars + 1e-6)**0.5
mae_loss = F.mse_loss(pred_pixel_values, target)
else:
mae_loss = F.mse_loss(pred_pixel_values, masked_patches)
mae_loss = mae_loss * self.mae_loss_weight
return {
'tags': preds,
'mae_loss': mae_loss,
}
def calculate_loss(self, preds, batch, pos_weight):
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) + preds['mae_loss']
def get_optimized_parameters(self, lr: float):
return self.parameters()
def save(self):
return self.state_dict()
def load(self, state_dict):
self.load_state_dict(state_dict)
class StochDepth(nn.Module):
def __init__(self, drop_rate: float, scale_by_keep: bool = False):
super().__init__()
self.drop_rate = drop_rate
self.scale_by_keep = scale_by_keep
def forward(self, x):
if not self.training:
return x
batch_size = x.shape[0]
r = torch.rand((batch_size, 1, 1), device=x.device)
keep_prob = 1 - self.drop_rate
binary_tensor = torch.floor(keep_prob + r)
if self.scale_by_keep:
x = x / keep_prob
return x * binary_tensor
class SkipInitChannelwise(nn.Module):
def __init__(self, channels, init_val=1e-6):
super().__init__()
self.channels = channels
self.init_val = init_val
self.skip = nn.Parameter(torch.ones(channels) * init_val)
def forward(self, x):
return x * self.skip
class PosEmbedding(nn.Module):
def __init__(self, d_model: int, max_len: int, use_sine: bool, patch_size: int):
super().__init__()
self.d_model = d_model
self.max_len = max_len
self.use_sine = use_sine
self.patch_size = patch_size
if not self.use_sine:
self.embedding = nn.Embedding(max_len, d_model)
nn.init.trunc_normal_(self.embedding.weight, std=0.02)
self.register_buffer("position_ids", torch.arange(max_len))
def forward(self, x, width: int, height: int):
if self.use_sine:
position_embeddings = sinusoidal_position_embedding(width // self.patch_size, height // self.patch_size, self.d_model, x.dtype, x.device)
else:
position_embeddings = self.embedding(self.position_ids)
return x + position_embeddings
class MLPBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, stochdepth_rate: float):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.activation = nn.GELU()
if stochdepth_rate > 0:
self.stochdepth = StochDepth(stochdepth_rate, scale_by_keep=True)
else:
self.stochdepth = None
def forward(self, x):
x = self.linear1(x)
x = self.activation(x)
if self.stochdepth is not None:
x = self.stochdepth(x)
x = self.linear2(x)
return x
class ViTBlock(nn.Module):
def __init__(self, num_heads: int, d_model: int, d_ff: int, layerscale_init: float, stochdepth_rate: float):
super().__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
# MHA
self.norm1 = nn.LayerNorm(d_model)
self.qkv_proj = nn.Linear(d_model, d_model * 3)
self.out_proj = nn.Linear(d_model, d_model)
self.skip_init1 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init)
self.stochdepth1 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None
# MLP
self.norm2 = nn.LayerNorm(d_model)
self.mlp = MLPBlock(d_model, d_ff, stochdepth_rate)
self.skip_init2 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init)
self.stochdepth2 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None
def forward(self, x):
bsz, src_len, embed_dim = x.shape
out = x
out = self.norm1(out)
# MHA
qkv_states = self.qkv_proj(out).split(self.d_model, dim=-1)
q_states = qkv_states[0].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
k_states = qkv_states[1].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
v_states = qkv_states[2].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
with torch.backends.cuda.sdp_kernel(enable_math=False):
out = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim)
out = out.transpose(1, 2).contiguous().view(bsz, src_len, embed_dim) # (bsz, tgt_len, embed_dim)
out = self.out_proj(out)
out = self.skip_init1(out)
if self.stochdepth1 is not None:
out = self.stochdepth1(out)
x = out + x
out = self.norm2(x)
out = self.mlp(out)
out = self.skip_init2(out)
if self.stochdepth2 is not None:
out = self.stochdepth2(out)
out = out + x
return out
def CaiT_LayerScale_init(network_depth):
if network_depth <= 18:
return 1e-1
elif network_depth <= 24:
return 1e-5
else:
return 1e-6
class CNNLayerNorm(nn.Module):
def __init__(self, d_model: int):
super().__init__()
self.norm = nn.LayerNorm(d_model)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 3)
x = self.norm(x)
x = x.transpose(1, 3)
return x
class CNNStem(nn.Module):
def __init__(self, config: str):
super().__init__()
self.config = config
layers = []
channels = 3
for line in config.split(";"):
ty, line = line.split(":") if ":" in line else (line, "")
options = line.split(",")
options = [o.split("=") for o in options] if line else []
options = {k: v for k, v in options}
if ty == 'conv':
layers.append(nn.Conv2d(
in_channels=channels,
out_channels=int(options['c']),
kernel_size=int(options['k'] if 'k' in options else 3),
stride=int(options['s'] if 's' in options else 2),
bias=True,
padding=int(options['p'] if 'p' in options else 1),
))
channels = int(options['c'])
elif ty == 'bn':
layers.append(nn.BatchNorm2d(channels))
elif ty == 'ln':
layers.append(CNNLayerNorm(channels))
elif ty == 'relu':
layers.append(nn.ReLU())
elif ty == 'gelu':
layers.append(nn.GELU())
self.conv = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.conv(x)
class ViT(VisionModel):
def __init__(self,
n_tags: int,
image_size: int,
num_blocks: int,
patch_size: int,
d_model: int,
mlp_dim: int,
num_heads: int,
stochdepth_rate: float,
use_sine: bool,
loss_type: str,
layerscale_init: Optional[float] = None,
head_mean_after: bool = False,
cnn_stem: str | None = None,
patch_dropout: float = 0.0,
):
super().__init__(image_size, n_tags)
#assert image_size % patch_size == 0, "image_size must be divisible by patch_size"
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
out_dim = n_tags
self.n_tags = n_tags
self.loss_type = loss_type
self.patch_size = patch_size
self.head_mean_after = head_mean_after
self.patch_dropout = patch_dropout
layerscale_init = CaiT_LayerScale_init(num_blocks) if layerscale_init is None else layerscale_init
self.patch_embeddings = nn.Conv2d(
in_channels=3,
out_channels=d_model,
kernel_size=patch_size,
stride=patch_size,
bias=True,
) if cnn_stem is None else CNNStem(cnn_stem)
self.pos_embedding = PosEmbedding(d_model, (image_size // patch_size) ** 2, use_sine=use_sine, patch_size=patch_size)
self.blocks = nn.ModuleList([
ViTBlock(num_heads, d_model, mlp_dim, layerscale_init, stochdepth_rate)
for _ in range(num_blocks)
])
self.norm = nn.LayerNorm(d_model)
self.head = nn.Linear(d_model, out_dim)
def forward(self, batch, return_embeddings=False, return_loss: bool = False, pos_weight = None):
B, C, H, W = batch['image'].shape
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
x = self.patch_embeddings(batch['image']) # (bsz, d_model, patch_num, patch_num)
x = x.flatten(2).transpose(1, 2) # (bsz, patch_num ** 2, d_model)
x = self.pos_embedding(x, W, H) # (bsz, patch_num ** 2, d_model)
# Patch dropout
seq_len = x.shape[1]
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len))
if patch_dropout != seq_len:
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len)
patch_mask = torch.rand(B, seq_len, device=x.device)
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
patch_mask = torch.argsort(patch_mask, dim=1)
# Truncate
patch_mask = patch_mask[:, :patch_dropout]
x = x.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, x.shape[-1]))
#indices = torch.randperm(seq_len, device=x.device)[:patch_dropout]
#x = x[:, indices, :]
# Transformer
for block in self.blocks:
x = block(x)
# Head
result = {}
x = self.norm(x)
if self.head_mean_after:
x = self.head(x)
x = x.mean(dim=1)
else:
x = x.mean(dim=1)
if return_embeddings:
result['embeddings'] = x
x = self.head(x)
result['tags'] = x
if return_loss:
result['loss'] = self.calculate_loss(result, batch, pos_weight)
return result
def calculate_loss(self, preds, batch, pos_weight):
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type)
def get_optimized_parameters(self, lr: float):
return self.parameters()
def save(self):
return self.state_dict()
def load(self, state_dict):
if 'head.weight' in state_dict and 'head.bias' in state_dict and state_dict['head.weight'].shape[0] == (self.n_tags + 9):
# Support old models which included 3 rating and 6 score dimensions
state_dict['head.weight'] = state_dict['head.weight'][:self.n_tags]
state_dict['head.bias'] = state_dict['head.bias'][:self.n_tags]
self.load_state_dict(state_dict)