Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| # -*- coding: utf-8 -*- | |
| # transformations.py | |
| # Copyright (c) 2006-2015, Christoph Gohlke | |
| # Copyright (c) 2006-2015, The Regents of the University of California | |
| # Produced at the Laboratory for Fluorescence Dynamics | |
| # All rights reserved. | |
| # | |
| # Redistribution and use in source and binary forms, with or without | |
| # modification, are permitted provided that the following conditions are met: | |
| # | |
| # * Redistributions of source code must retain the above copyright | |
| # notice, this list of conditions and the following disclaimer. | |
| # * Redistributions in binary form must reproduce the above copyright | |
| # notice, this list of conditions and the following disclaimer in the | |
| # documentation and/or other materials provided with the distribution. | |
| # * Neither the name of the copyright holders nor the names of any | |
| # contributors may be used to endorse or promote products derived | |
| # from this software without specific prior written permission. | |
| # | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
| # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
| # POSSIBILITY OF SUCH DAMAGE. | |
| """Homogeneous Transformation Matrices and Quaternions. | |
| A library for calculating 4x4 matrices for translating, rotating, reflecting, | |
| scaling, shearing, projecting, orthogonalizing, and superimposing arrays of | |
| 3D homogeneous coordinates as well as for converting between rotation matrices, | |
| Euler angles, and quaternions. Also includes an Arcball control object and | |
| functions to decompose transformation matrices. | |
| :Author: | |
| `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ | |
| :Organization: | |
| Laboratory for Fluorescence Dynamics, University of California, Irvine | |
| :Version: 2015.07.18 | |
| Requirements | |
| ------------ | |
| * `CPython 2.7 or 3.4 <http://www.python.org>`_ | |
| * `Numpy 1.9 <http://www.numpy.org>`_ | |
| * `Transformations.c 2015.07.18 <http://www.lfd.uci.edu/~gohlke/>`_ | |
| (recommended for speedup of some functions) | |
| Notes | |
| ----- | |
| The API is not stable yet and is expected to change between revisions. | |
| This Python code is not optimized for speed. Refer to the transformations.c | |
| module for a faster implementation of some functions. | |
| Documentation in HTML format can be generated with epydoc. | |
| Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using | |
| numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using | |
| numpy.dot(M, v) for shape (4, \*) column vectors, respectively | |
| numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points"). | |
| This module follows the "column vectors on the right" and "row major storage" | |
| (C contiguous) conventions. The translation components are in the right column | |
| of the transformation matrix, i.e. M[:3, 3]. | |
| The transpose of the transformation matrices may have to be used to interface | |
| with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16]. | |
| Calculations are carried out with numpy.float64 precision. | |
| Vector, point, quaternion, and matrix function arguments are expected to be | |
| "array like", i.e. tuple, list, or numpy arrays. | |
| Return types are numpy arrays unless specified otherwise. | |
| Angles are in radians unless specified otherwise. | |
| Quaternions w+ix+jy+kz are represented as [w, x, y, z]. | |
| A triple of Euler angles can be applied/interpreted in 24 ways, which can | |
| be specified using a 4 character string or encoded 4-tuple: | |
| *Axes 4-string*: e.g. 'sxyz' or 'ryxy' | |
| - first character : rotations are applied to 's'tatic or 'r'otating frame | |
| - remaining characters : successive rotation axis 'x', 'y', or 'z' | |
| *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) | |
| - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. | |
| - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed | |
| by 'z', or 'z' is followed by 'x'. Otherwise odd (1). | |
| - repetition : first and last axis are same (1) or different (0). | |
| - frame : rotations are applied to static (0) or rotating (1) frame. | |
| Other Python packages and modules for 3D transformations and quaternions: | |
| * `Transforms3d <https://pypi.python.org/pypi/transforms3d>`_ | |
| includes most code of this module. | |
| * `Blender.mathutils <http://www.blender.org/api/blender_python_api>`_ | |
| * `numpy-dtypes <https://github.com/numpy/numpy-dtypes>`_ | |
| References | |
| ---------- | |
| (1) Matrices and transformations. Ronald Goldman. | |
| In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990. | |
| (2) More matrices and transformations: shear and pseudo-perspective. | |
| Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
| (3) Decomposing a matrix into simple transformations. Spencer Thomas. | |
| In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
| (4) Recovering the data from the transformation matrix. Ronald Goldman. | |
| In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991. | |
| (5) Euler angle conversion. Ken Shoemake. | |
| In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994. | |
| (6) Arcball rotation control. Ken Shoemake. | |
| In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994. | |
| (7) Representing attitude: Euler angles, unit quaternions, and rotation | |
| vectors. James Diebel. 2006. | |
| (8) A discussion of the solution for the best rotation to relate two sets | |
| of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828. | |
| (9) Closed-form solution of absolute orientation using unit quaternions. | |
| BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642. | |
| (10) Quaternions. Ken Shoemake. | |
| http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf | |
| (11) From quaternion to matrix and back. JMP van Waveren. 2005. | |
| http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm | |
| (12) Uniform random rotations. Ken Shoemake. | |
| In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992. | |
| (13) Quaternion in molecular modeling. CFF Karney. | |
| J Mol Graph Mod, 25(5):595-604 | |
| (14) New method for extracting the quaternion from a rotation matrix. | |
| Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087. | |
| (15) Multiple View Geometry in Computer Vision. Hartley and Zissermann. | |
| Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130. | |
| (16) Column Vectors vs. Row Vectors. | |
| http://steve.hollasch.net/cgindex/math/matrix/column-vec.html | |
| Examples | |
| -------- | |
| alpha, beta, gamma = 0.123, -1.234, 2.345 | |
| origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1] | |
| I = identity_matrix() | |
| Rx = rotation_matrix(alpha, xaxis) | |
| Ry = rotation_matrix(beta, yaxis) | |
| Rz = rotation_matrix(gamma, zaxis) | |
| R = concatenate_matrices(Rx, Ry, Rz) | |
| euler = euler_from_matrix(R, 'rxyz') | |
| numpy.allclose([alpha, beta, gamma], euler) | |
| True | |
| Re = euler_matrix(alpha, beta, gamma, 'rxyz') | |
| is_same_transform(R, Re) | |
| True | |
| al, be, ga = euler_from_matrix(Re, 'rxyz') | |
| is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) | |
| True | |
| qx = quaternion_about_axis(alpha, xaxis) | |
| qy = quaternion_about_axis(beta, yaxis) | |
| qz = quaternion_about_axis(gamma, zaxis) | |
| q = quaternion_multiply(qx, qy) | |
| q = quaternion_multiply(q, qz) | |
| Rq = quaternion_matrix(q) | |
| is_same_transform(R, Rq) | |
| True | |
| S = scale_matrix(1.23, origin) | |
| T = translation_matrix([1, 2, 3]) | |
| Z = shear_matrix(beta, xaxis, origin, zaxis) | |
| R = random_rotation_matrix(numpy.random.rand(3)) | |
| M = concatenate_matrices(T, R, Z, S) | |
| scale, shear, angles, trans, persp = decompose_matrix(M) | |
| numpy.allclose(scale, 1.23) | |
| True | |
| numpy.allclose(trans, [1, 2, 3]) | |
| True | |
| numpy.allclose(shear, [0, math.tan(beta), 0]) | |
| True | |
| is_same_transform(R, euler_matrix(axes='sxyz', *angles)) | |
| True | |
| M1 = compose_matrix(scale, shear, angles, trans, persp) | |
| is_same_transform(M, M1) | |
| True | |
| v0, v1 = random_vector(3), random_vector(3) | |
| M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1)) | |
| v2 = numpy.dot(v0, M[:3,:3].T) | |
| numpy.allclose(unit_vector(v1), unit_vector(v2)) | |
| True | |
| """ | |
| from __future__ import division, print_function | |
| import math | |
| import numpy | |
| __version__ = "2015.07.18" | |
| __docformat__ = "restructuredtext en" | |
| __all__ = () | |
| def identity_matrix(): | |
| """Return 4x4 identity/unit matrix. | |
| >>> I = identity_matrix() | |
| >>> numpy.allclose(I, numpy.dot(I, I)) | |
| True | |
| >>> numpy.sum(I), numpy.trace(I) | |
| (4.0, 4.0) | |
| >>> numpy.allclose(I, numpy.identity(4)) | |
| True | |
| """ | |
| return numpy.identity(4) | |
| def translation_matrix(direction): | |
| """Return matrix to translate by direction vector. | |
| >>> v = numpy.random.random(3) - 0.5 | |
| >>> numpy.allclose(v, translation_matrix(v)[:3, 3]) | |
| True | |
| """ | |
| M = numpy.identity(4) | |
| M[:3, 3] = direction[:3] | |
| return M | |
| def translation_from_matrix(matrix): | |
| """Return translation vector from translation matrix. | |
| >>> v0 = numpy.random.random(3) - 0.5 | |
| >>> v1 = translation_from_matrix(translation_matrix(v0)) | |
| >>> numpy.allclose(v0, v1) | |
| True | |
| """ | |
| return numpy.array(matrix, copy=False)[:3, 3].copy() | |
| def reflection_matrix(point, normal): | |
| """Return matrix to mirror at plane defined by point and normal vector. | |
| >>> v0 = numpy.random.random(4) - 0.5 | |
| >>> v0[3] = 1. | |
| >>> v1 = numpy.random.random(3) - 0.5 | |
| >>> R = reflection_matrix(v0, v1) | |
| >>> numpy.allclose(2, numpy.trace(R)) | |
| True | |
| >>> numpy.allclose(v0, numpy.dot(R, v0)) | |
| True | |
| >>> v2 = v0.copy() | |
| >>> v2[:3] += v1 | |
| >>> v3 = v0.copy() | |
| >>> v2[:3] -= v1 | |
| >>> numpy.allclose(v2, numpy.dot(R, v3)) | |
| True | |
| """ | |
| normal = unit_vector(normal[:3]) | |
| M = numpy.identity(4) | |
| M[:3, :3] -= 2.0 * numpy.outer(normal, normal) | |
| M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal | |
| return M | |
| def reflection_from_matrix(matrix): | |
| """Return mirror plane point and normal vector from reflection matrix. | |
| >>> v0 = numpy.random.random(3) - 0.5 | |
| >>> v1 = numpy.random.random(3) - 0.5 | |
| >>> M0 = reflection_matrix(v0, v1) | |
| >>> point, normal = reflection_from_matrix(M0) | |
| >>> M1 = reflection_matrix(point, normal) | |
| >>> is_same_transform(M0, M1) | |
| True | |
| """ | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| # normal: unit eigenvector corresponding to eigenvalue -1 | |
| w, V = numpy.linalg.eig(M[:3, :3]) | |
| i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no unit eigenvector corresponding to eigenvalue -1") | |
| normal = numpy.real(V[:, i[0]]).squeeze() | |
| # point: any unit eigenvector corresponding to eigenvalue 1 | |
| w, V = numpy.linalg.eig(M) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
| point = numpy.real(V[:, i[-1]]).squeeze() | |
| point /= point[3] | |
| return point, normal | |
| def rotation_matrix(angle, direction, point=None): | |
| """Return matrix to rotate about axis defined by point and direction. | |
| >>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0]) | |
| >>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1]) | |
| True | |
| >>> angle = (random.random() - 0.5) * (2*math.pi) | |
| >>> direc = numpy.random.random(3) - 0.5 | |
| >>> point = numpy.random.random(3) - 0.5 | |
| >>> R0 = rotation_matrix(angle, direc, point) | |
| >>> R1 = rotation_matrix(angle-2*math.pi, direc, point) | |
| >>> is_same_transform(R0, R1) | |
| True | |
| >>> R0 = rotation_matrix(angle, direc, point) | |
| >>> R1 = rotation_matrix(-angle, -direc, point) | |
| >>> is_same_transform(R0, R1) | |
| True | |
| >>> I = numpy.identity(4, numpy.float64) | |
| >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) | |
| True | |
| >>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2, | |
| ... direc, point))) | |
| True | |
| """ | |
| sina = math.sin(angle) | |
| cosa = math.cos(angle) | |
| direction = unit_vector(direction[:3]) | |
| # rotation matrix around unit vector | |
| R = numpy.diag([cosa, cosa, cosa]) | |
| R += numpy.outer(direction, direction) * (1.0 - cosa) | |
| direction *= sina | |
| R += numpy.array( | |
| [ | |
| [0.0, -direction[2], direction[1]], | |
| [direction[2], 0.0, -direction[0]], | |
| [-direction[1], direction[0], 0.0], | |
| ] | |
| ) | |
| M = numpy.identity(4) | |
| M[:3, :3] = R | |
| if point is not None: | |
| # rotation not around origin | |
| point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
| M[:3, 3] = point - numpy.dot(R, point) | |
| return M | |
| def rotation_from_matrix(matrix): | |
| """Return rotation angle and axis from rotation matrix. | |
| >>> angle = (random.random() - 0.5) * (2*math.pi) | |
| >>> direc = numpy.random.random(3) - 0.5 | |
| >>> point = numpy.random.random(3) - 0.5 | |
| >>> R0 = rotation_matrix(angle, direc, point) | |
| >>> angle, direc, point = rotation_from_matrix(R0) | |
| >>> R1 = rotation_matrix(angle, direc, point) | |
| >>> is_same_transform(R0, R1) | |
| True | |
| """ | |
| R = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| R33 = R[:3, :3] | |
| # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
| w, W = numpy.linalg.eig(R33.T) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
| direction = numpy.real(W[:, i[-1]]).squeeze() | |
| # point: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
| w, Q = numpy.linalg.eig(R) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
| point = numpy.real(Q[:, i[-1]]).squeeze() | |
| point /= point[3] | |
| # rotation angle depending on direction | |
| cosa = (numpy.trace(R33) - 1.0) / 2.0 | |
| if abs(direction[2]) > 1e-8: | |
| sina = (R[1, 0] + (cosa - 1.0) * direction[0] * direction[1]) / direction[2] | |
| elif abs(direction[1]) > 1e-8: | |
| sina = (R[0, 2] + (cosa - 1.0) * direction[0] * direction[2]) / direction[1] | |
| else: | |
| sina = (R[2, 1] + (cosa - 1.0) * direction[1] * direction[2]) / direction[0] | |
| angle = math.atan2(sina, cosa) | |
| return angle, direction, point | |
| def scale_matrix(factor, origin=None, direction=None): | |
| """Return matrix to scale by factor around origin in direction. | |
| Use factor -1 for point symmetry. | |
| >>> v = (numpy.random.rand(4, 5) - 0.5) * 20 | |
| >>> v[3] = 1 | |
| >>> S = scale_matrix(-1.234) | |
| >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) | |
| True | |
| >>> factor = random.random() * 10 - 5 | |
| >>> origin = numpy.random.random(3) - 0.5 | |
| >>> direct = numpy.random.random(3) - 0.5 | |
| >>> S = scale_matrix(factor, origin) | |
| >>> S = scale_matrix(factor, origin, direct) | |
| """ | |
| if direction is None: | |
| # uniform scaling | |
| M = numpy.diag([factor, factor, factor, 1.0]) | |
| if origin is not None: | |
| M[:3, 3] = origin[:3] | |
| M[:3, 3] *= 1.0 - factor | |
| else: | |
| # nonuniform scaling | |
| direction = unit_vector(direction[:3]) | |
| factor = 1.0 - factor | |
| M = numpy.identity(4) | |
| M[:3, :3] -= factor * numpy.outer(direction, direction) | |
| if origin is not None: | |
| M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction | |
| return M | |
| def scale_from_matrix(matrix): | |
| """Return scaling factor, origin and direction from scaling matrix. | |
| >>> factor = random.random() * 10 - 5 | |
| >>> origin = numpy.random.random(3) - 0.5 | |
| >>> direct = numpy.random.random(3) - 0.5 | |
| >>> S0 = scale_matrix(factor, origin) | |
| >>> factor, origin, direction = scale_from_matrix(S0) | |
| >>> S1 = scale_matrix(factor, origin, direction) | |
| >>> is_same_transform(S0, S1) | |
| True | |
| >>> S0 = scale_matrix(factor, origin, direct) | |
| >>> factor, origin, direction = scale_from_matrix(S0) | |
| >>> S1 = scale_matrix(factor, origin, direction) | |
| >>> is_same_transform(S0, S1) | |
| True | |
| """ | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| M33 = M[:3, :3] | |
| factor = numpy.trace(M33) - 2.0 | |
| try: | |
| # direction: unit eigenvector corresponding to eigenvalue factor | |
| w, V = numpy.linalg.eig(M33) | |
| i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0] | |
| direction = numpy.real(V[:, i]).squeeze() | |
| direction /= vector_norm(direction) | |
| except IndexError: | |
| # uniform scaling | |
| factor = (factor + 2.0) / 3.0 | |
| direction = None | |
| # origin: any eigenvector corresponding to eigenvalue 1 | |
| w, V = numpy.linalg.eig(M) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
| origin = numpy.real(V[:, i[-1]]).squeeze() | |
| origin /= origin[3] | |
| return factor, origin, direction | |
| def projection_matrix(point, normal, direction=None, perspective=None, pseudo=False): | |
| """Return matrix to project onto plane defined by point and normal. | |
| Using either perspective point, projection direction, or none of both. | |
| If pseudo is True, perspective projections will preserve relative depth | |
| such that Perspective = dot(Orthogonal, PseudoPerspective). | |
| >>> P = projection_matrix([0, 0, 0], [1, 0, 0]) | |
| >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) | |
| True | |
| >>> point = numpy.random.random(3) - 0.5 | |
| >>> normal = numpy.random.random(3) - 0.5 | |
| >>> direct = numpy.random.random(3) - 0.5 | |
| >>> persp = numpy.random.random(3) - 0.5 | |
| >>> P0 = projection_matrix(point, normal) | |
| >>> P1 = projection_matrix(point, normal, direction=direct) | |
| >>> P2 = projection_matrix(point, normal, perspective=persp) | |
| >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
| >>> is_same_transform(P2, numpy.dot(P0, P3)) | |
| True | |
| >>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0]) | |
| >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20 | |
| >>> v0[3] = 1 | |
| >>> v1 = numpy.dot(P, v0) | |
| >>> numpy.allclose(v1[1], v0[1]) | |
| True | |
| >>> numpy.allclose(v1[0], 3-v1[1]) | |
| True | |
| """ | |
| M = numpy.identity(4) | |
| point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
| normal = unit_vector(normal[:3]) | |
| if perspective is not None: | |
| # perspective projection | |
| perspective = numpy.array(perspective[:3], dtype=numpy.float64, copy=False) | |
| M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective - point, normal) | |
| M[:3, :3] -= numpy.outer(perspective, normal) | |
| if pseudo: | |
| # preserve relative depth | |
| M[:3, :3] -= numpy.outer(normal, normal) | |
| M[:3, 3] = numpy.dot(point, normal) * (perspective + normal) | |
| else: | |
| M[:3, 3] = numpy.dot(point, normal) * perspective | |
| M[3, :3] = -normal | |
| M[3, 3] = numpy.dot(perspective, normal) | |
| elif direction is not None: | |
| # parallel projection | |
| direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) | |
| scale = numpy.dot(direction, normal) | |
| M[:3, :3] -= numpy.outer(direction, normal) / scale | |
| M[:3, 3] = direction * (numpy.dot(point, normal) / scale) | |
| else: | |
| # orthogonal projection | |
| M[:3, :3] -= numpy.outer(normal, normal) | |
| M[:3, 3] = numpy.dot(point, normal) * normal | |
| return M | |
| def projection_from_matrix(matrix, pseudo=False): | |
| """Return projection plane and perspective point from projection matrix. | |
| Return values are same as arguments for projection_matrix function: | |
| point, normal, direction, perspective, and pseudo. | |
| >>> point = numpy.random.random(3) - 0.5 | |
| >>> normal = numpy.random.random(3) - 0.5 | |
| >>> direct = numpy.random.random(3) - 0.5 | |
| >>> persp = numpy.random.random(3) - 0.5 | |
| >>> P0 = projection_matrix(point, normal) | |
| >>> result = projection_from_matrix(P0) | |
| >>> P1 = projection_matrix(*result) | |
| >>> is_same_transform(P0, P1) | |
| True | |
| >>> P0 = projection_matrix(point, normal, direct) | |
| >>> result = projection_from_matrix(P0) | |
| >>> P1 = projection_matrix(*result) | |
| >>> is_same_transform(P0, P1) | |
| True | |
| >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) | |
| >>> result = projection_from_matrix(P0, pseudo=False) | |
| >>> P1 = projection_matrix(*result) | |
| >>> is_same_transform(P0, P1) | |
| True | |
| >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
| >>> result = projection_from_matrix(P0, pseudo=True) | |
| >>> P1 = projection_matrix(*result) | |
| >>> is_same_transform(P0, P1) | |
| True | |
| """ | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| M33 = M[:3, :3] | |
| w, V = numpy.linalg.eig(M) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| if not pseudo and len(i): | |
| # point: any eigenvector corresponding to eigenvalue 1 | |
| point = numpy.real(V[:, i[-1]]).squeeze() | |
| point /= point[3] | |
| # direction: unit eigenvector corresponding to eigenvalue 0 | |
| w, V = numpy.linalg.eig(M33) | |
| i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no eigenvector corresponding to eigenvalue 0") | |
| direction = numpy.real(V[:, i[0]]).squeeze() | |
| direction /= vector_norm(direction) | |
| # normal: unit eigenvector of M33.T corresponding to eigenvalue 0 | |
| w, V = numpy.linalg.eig(M33.T) | |
| i = numpy.where(abs(numpy.real(w)) < 1e-8)[0] | |
| if len(i): | |
| # parallel projection | |
| normal = numpy.real(V[:, i[0]]).squeeze() | |
| normal /= vector_norm(normal) | |
| return point, normal, direction, None, False | |
| else: | |
| # orthogonal projection, where normal equals direction vector | |
| return point, direction, None, None, False | |
| else: | |
| # perspective projection | |
| i = numpy.where(abs(numpy.real(w)) > 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no eigenvector not corresponding to eigenvalue 0") | |
| point = numpy.real(V[:, i[-1]]).squeeze() | |
| point /= point[3] | |
| normal = -M[3, :3] | |
| perspective = M[:3, 3] / numpy.dot(point[:3], normal) | |
| if pseudo: | |
| perspective -= normal | |
| return point, normal, None, perspective, pseudo | |
| def clip_matrix(left, right, bottom, top, near, far, perspective=False): | |
| """Return matrix to obtain normalized device coordinates from frustum. | |
| The frustum bounds are axis-aligned along x (left, right), | |
| y (bottom, top) and z (near, far). | |
| Normalized device coordinates are in range [-1, 1] if coordinates are | |
| inside the frustum. | |
| If perspective is True the frustum is a truncated pyramid with the | |
| perspective point at origin and direction along z axis, otherwise an | |
| orthographic canonical view volume (a box). | |
| Homogeneous coordinates transformed by the perspective clip matrix | |
| need to be dehomogenized (divided by w coordinate). | |
| >>> frustum = numpy.random.rand(6) | |
| >>> frustum[1] += frustum[0] | |
| >>> frustum[3] += frustum[2] | |
| >>> frustum[5] += frustum[4] | |
| >>> M = clip_matrix(perspective=False, *frustum) | |
| >>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | |
| array([-1., -1., -1., 1.]) | |
| >>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1]) | |
| array([ 1., 1., 1., 1.]) | |
| >>> M = clip_matrix(perspective=True, *frustum) | |
| >>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1]) | |
| >>> v / v[3] | |
| array([-1., -1., -1., 1.]) | |
| >>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1]) | |
| >>> v / v[3] | |
| array([ 1., 1., -1., 1.]) | |
| """ | |
| if left >= right or bottom >= top or near >= far: | |
| raise ValueError("invalid frustum") | |
| if perspective: | |
| if near <= _EPS: | |
| raise ValueError("invalid frustum: near <= 0") | |
| t = 2.0 * near | |
| M = [ | |
| [t / (left - right), 0.0, (right + left) / (right - left), 0.0], | |
| [0.0, t / (bottom - top), (top + bottom) / (top - bottom), 0.0], | |
| [0.0, 0.0, (far + near) / (near - far), t * far / (far - near)], | |
| [0.0, 0.0, -1.0, 0.0], | |
| ] | |
| else: | |
| M = [ | |
| [2.0 / (right - left), 0.0, 0.0, (right + left) / (left - right)], | |
| [0.0, 2.0 / (top - bottom), 0.0, (top + bottom) / (bottom - top)], | |
| [0.0, 0.0, 2.0 / (far - near), (far + near) / (near - far)], | |
| [0.0, 0.0, 0.0, 1.0], | |
| ] | |
| return numpy.array(M) | |
| def shear_matrix(angle, direction, point, normal): | |
| """Return matrix to shear by angle along direction vector on shear plane. | |
| The shear plane is defined by a point and normal vector. The direction | |
| vector must be orthogonal to the plane's normal vector. | |
| A point P is transformed by the shear matrix into P" such that | |
| the vector P-P" is parallel to the direction vector and its extent is | |
| given by the angle of P-P'-P", where P' is the orthogonal projection | |
| of P onto the shear plane. | |
| >>> angle = (random.random() - 0.5) * 4*math.pi | |
| >>> direct = numpy.random.random(3) - 0.5 | |
| >>> point = numpy.random.random(3) - 0.5 | |
| >>> normal = numpy.cross(direct, numpy.random.random(3)) | |
| >>> S = shear_matrix(angle, direct, point, normal) | |
| >>> numpy.allclose(1, numpy.linalg.det(S)) | |
| True | |
| """ | |
| normal = unit_vector(normal[:3]) | |
| direction = unit_vector(direction[:3]) | |
| if abs(numpy.dot(normal, direction)) > 1e-6: | |
| raise ValueError("direction and normal vectors are not orthogonal") | |
| angle = math.tan(angle) | |
| M = numpy.identity(4) | |
| M[:3, :3] += angle * numpy.outer(direction, normal) | |
| M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction | |
| return M | |
| def shear_from_matrix(matrix): | |
| """Return shear angle, direction and plane from shear matrix. | |
| >>> angle = (random.random() - 0.5) * 4*math.pi | |
| >>> direct = numpy.random.random(3) - 0.5 | |
| >>> point = numpy.random.random(3) - 0.5 | |
| >>> normal = numpy.cross(direct, numpy.random.random(3)) | |
| >>> S0 = shear_matrix(angle, direct, point, normal) | |
| >>> angle, direct, point, normal = shear_from_matrix(S0) | |
| >>> S1 = shear_matrix(angle, direct, point, normal) | |
| >>> is_same_transform(S0, S1) | |
| True | |
| """ | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
| M33 = M[:3, :3] | |
| # normal: cross independent eigenvectors corresponding to the eigenvalue 1 | |
| w, V = numpy.linalg.eig(M33) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0] | |
| if len(i) < 2: | |
| raise ValueError("no two linear independent eigenvectors found %s" % w) | |
| V = numpy.real(V[:, i]).squeeze().T | |
| lenorm = -1.0 | |
| for i0, i1 in ((0, 1), (0, 2), (1, 2)): | |
| n = numpy.cross(V[i0], V[i1]) | |
| w = vector_norm(n) | |
| if w > lenorm: | |
| lenorm = w | |
| normal = n | |
| normal /= lenorm | |
| # direction and angle | |
| direction = numpy.dot(M33 - numpy.identity(3), normal) | |
| angle = vector_norm(direction) | |
| direction /= angle | |
| angle = math.atan(angle) | |
| # point: eigenvector corresponding to eigenvalue 1 | |
| w, V = numpy.linalg.eig(M) | |
| i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0] | |
| if not len(i): | |
| raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
| point = numpy.real(V[:, i[-1]]).squeeze() | |
| point /= point[3] | |
| return angle, direction, point, normal | |
| def decompose_matrix(matrix): | |
| """Return sequence of transformations from transformation matrix. | |
| matrix : array_like | |
| Non-degenerative homogeneous transformation matrix | |
| Return tuple of: | |
| scale : vector of 3 scaling factors | |
| shear : list of shear factors for x-y, x-z, y-z axes | |
| angles : list of Euler angles about static x, y, z axes | |
| translate : translation vector along x, y, z axes | |
| perspective : perspective partition of matrix | |
| Raise ValueError if matrix is of wrong type or degenerative. | |
| >>> T0 = translation_matrix([1, 2, 3]) | |
| >>> scale, shear, angles, trans, persp = decompose_matrix(T0) | |
| >>> T1 = translation_matrix(trans) | |
| >>> numpy.allclose(T0, T1) | |
| True | |
| >>> S = scale_matrix(0.123) | |
| >>> scale, shear, angles, trans, persp = decompose_matrix(S) | |
| >>> scale[0] | |
| 0.123 | |
| >>> R0 = euler_matrix(1, 2, 3) | |
| >>> scale, shear, angles, trans, persp = decompose_matrix(R0) | |
| >>> R1 = euler_matrix(*angles) | |
| >>> numpy.allclose(R0, R1) | |
| True | |
| """ | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=True).T | |
| if abs(M[3, 3]) < _EPS: | |
| raise ValueError("M[3, 3] is zero") | |
| M /= M[3, 3] | |
| P = M.copy() | |
| P[:, 3] = 0.0, 0.0, 0.0, 1.0 | |
| if not numpy.linalg.det(P): | |
| raise ValueError("matrix is singular") | |
| scale = numpy.zeros((3,)) | |
| shear = [0.0, 0.0, 0.0] | |
| angles = [0.0, 0.0, 0.0] | |
| if any(abs(M[:3, 3]) > _EPS): | |
| perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) | |
| M[:, 3] = 0.0, 0.0, 0.0, 1.0 | |
| else: | |
| perspective = numpy.array([0.0, 0.0, 0.0, 1.0]) | |
| translate = M[3, :3].copy() | |
| M[3, :3] = 0.0 | |
| row = M[:3, :3].copy() | |
| scale[0] = vector_norm(row[0]) | |
| row[0] /= scale[0] | |
| shear[0] = numpy.dot(row[0], row[1]) | |
| row[1] -= row[0] * shear[0] | |
| scale[1] = vector_norm(row[1]) | |
| row[1] /= scale[1] | |
| shear[0] /= scale[1] | |
| shear[1] = numpy.dot(row[0], row[2]) | |
| row[2] -= row[0] * shear[1] | |
| shear[2] = numpy.dot(row[1], row[2]) | |
| row[2] -= row[1] * shear[2] | |
| scale[2] = vector_norm(row[2]) | |
| row[2] /= scale[2] | |
| shear[1:] /= scale[2] | |
| if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: | |
| numpy.negative(scale, scale) | |
| numpy.negative(row, row) | |
| angles[1] = math.asin(-row[0, 2]) | |
| if math.cos(angles[1]): | |
| angles[0] = math.atan2(row[1, 2], row[2, 2]) | |
| angles[2] = math.atan2(row[0, 1], row[0, 0]) | |
| else: | |
| # angles[0] = math.atan2(row[1, 0], row[1, 1]) | |
| angles[0] = math.atan2(-row[2, 1], row[1, 1]) | |
| angles[2] = 0.0 | |
| return scale, shear, angles, translate, perspective | |
| def compose_matrix( | |
| scale=None, shear=None, angles=None, translate=None, perspective=None | |
| ): | |
| """Return transformation matrix from sequence of transformations. | |
| This is the inverse of the decompose_matrix function. | |
| Sequence of transformations: | |
| scale : vector of 3 scaling factors | |
| shear : list of shear factors for x-y, x-z, y-z axes | |
| angles : list of Euler angles about static x, y, z axes | |
| translate : translation vector along x, y, z axes | |
| perspective : perspective partition of matrix | |
| >>> scale = numpy.random.random(3) - 0.5 | |
| >>> shear = numpy.random.random(3) - 0.5 | |
| >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) | |
| >>> trans = numpy.random.random(3) - 0.5 | |
| >>> persp = numpy.random.random(4) - 0.5 | |
| >>> M0 = compose_matrix(scale, shear, angles, trans, persp) | |
| >>> result = decompose_matrix(M0) | |
| >>> M1 = compose_matrix(*result) | |
| >>> is_same_transform(M0, M1) | |
| True | |
| """ | |
| M = numpy.identity(4) | |
| if perspective is not None: | |
| P = numpy.identity(4) | |
| P[3, :] = perspective[:4] | |
| M = numpy.dot(M, P) | |
| if translate is not None: | |
| T = numpy.identity(4) | |
| T[:3, 3] = translate[:3] | |
| M = numpy.dot(M, T) | |
| if angles is not None: | |
| R = euler_matrix(angles[0], angles[1], angles[2], "sxyz") | |
| M = numpy.dot(M, R) | |
| if shear is not None: | |
| Z = numpy.identity(4) | |
| Z[1, 2] = shear[2] | |
| Z[0, 2] = shear[1] | |
| Z[0, 1] = shear[0] | |
| M = numpy.dot(M, Z) | |
| if scale is not None: | |
| S = numpy.identity(4) | |
| S[0, 0] = scale[0] | |
| S[1, 1] = scale[1] | |
| S[2, 2] = scale[2] | |
| M = numpy.dot(M, S) | |
| M /= M[3, 3] | |
| return M | |
| def orthogonalization_matrix(lengths, angles): | |
| """Return orthogonalization matrix for crystallographic cell coordinates. | |
| Angles are expected in degrees. | |
| The de-orthogonalization matrix is the inverse. | |
| >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90]) | |
| >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) | |
| True | |
| >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) | |
| >>> numpy.allclose(numpy.sum(O), 43.063229) | |
| True | |
| """ | |
| a, b, c = lengths | |
| angles = numpy.radians(angles) | |
| sina, sinb, _ = numpy.sin(angles) | |
| cosa, cosb, cosg = numpy.cos(angles) | |
| co = (cosa * cosb - cosg) / (sina * sinb) | |
| return numpy.array( | |
| [ | |
| [a * sinb * math.sqrt(1.0 - co * co), 0.0, 0.0, 0.0], | |
| [-a * sinb * co, b * sina, 0.0, 0.0], | |
| [a * cosb, b * cosa, c, 0.0], | |
| [0.0, 0.0, 0.0, 1.0], | |
| ] | |
| ) | |
| def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True): | |
| """Return affine transform matrix to register two point sets. | |
| v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous | |
| coordinates, where ndims is the dimensionality of the coordinate space. | |
| If shear is False, a similarity transformation matrix is returned. | |
| If also scale is False, a rigid/Euclidean transformation matrix | |
| is returned. | |
| By default the algorithm by Hartley and Zissermann [15] is used. | |
| If usesvd is True, similarity and Euclidean transformation matrices | |
| are calculated by minimizing the weighted sum of squared deviations | |
| (RMSD) according to the algorithm by Kabsch [8]. | |
| Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9] | |
| is used, which is slower when using this Python implementation. | |
| The returned matrix performs rotation, translation and uniform scaling | |
| (if specified). | |
| >>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]] | |
| >>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]] | |
| >>> affine_matrix_from_points(v0, v1) | |
| array([[ 0.14549, 0.00062, 675.50008], | |
| [ 0.00048, 0.14094, 53.24971], | |
| [ 0. , 0. , 1. ]]) | |
| >>> T = translation_matrix(numpy.random.random(3)-0.5) | |
| >>> R = random_rotation_matrix(numpy.random.random(3)) | |
| >>> S = scale_matrix(random.random()) | |
| >>> M = concatenate_matrices(T, R, S) | |
| >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | |
| >>> v0[3] = 1 | |
| >>> v1 = numpy.dot(M, v0) | |
| >>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1) | |
| >>> M = affine_matrix_from_points(v0[:3], v1[:3]) | |
| >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| True | |
| More examples in superimposition_matrix() | |
| """ | |
| v0 = numpy.array(v0, dtype=numpy.float64, copy=True) | |
| v1 = numpy.array(v1, dtype=numpy.float64, copy=True) | |
| ndims = v0.shape[0] | |
| if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape: | |
| raise ValueError("input arrays are of wrong shape or type") | |
| # move centroids to origin | |
| t0 = -numpy.mean(v0, axis=1) | |
| M0 = numpy.identity(ndims + 1) | |
| M0[:ndims, ndims] = t0 | |
| v0 += t0.reshape(ndims, 1) | |
| t1 = -numpy.mean(v1, axis=1) | |
| M1 = numpy.identity(ndims + 1) | |
| M1[:ndims, ndims] = t1 | |
| v1 += t1.reshape(ndims, 1) | |
| if shear: | |
| # Affine transformation | |
| A = numpy.concatenate((v0, v1), axis=0) | |
| u, s, vh = numpy.linalg.svd(A.T) | |
| vh = vh[:ndims].T | |
| B = vh[:ndims] | |
| C = vh[ndims : 2 * ndims] | |
| t = numpy.dot(C, numpy.linalg.pinv(B)) | |
| t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1) | |
| M = numpy.vstack((t, ((0.0,) * ndims) + (1.0,))) | |
| elif usesvd or ndims != 3: | |
| # Rigid transformation via SVD of covariance matrix | |
| u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) | |
| # rotation matrix from SVD orthonormal bases | |
| R = numpy.dot(u, vh) | |
| if numpy.linalg.det(R) < 0.0: | |
| # R does not constitute right handed system | |
| R -= numpy.outer(u[:, ndims - 1], vh[ndims - 1, :] * 2.0) | |
| s[-1] *= -1.0 | |
| # homogeneous transformation matrix | |
| M = numpy.identity(ndims + 1) | |
| M[:ndims, :ndims] = R | |
| else: | |
| # Rigid transformation matrix via quaternion | |
| # compute symmetric matrix N | |
| xx, yy, zz = numpy.sum(v0 * v1, axis=1) | |
| xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) | |
| xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) | |
| N = [ | |
| [xx + yy + zz, 0.0, 0.0, 0.0], | |
| [yz - zy, xx - yy - zz, 0.0, 0.0], | |
| [zx - xz, xy + yx, yy - xx - zz, 0.0], | |
| [xy - yx, zx + xz, yz + zy, zz - xx - yy], | |
| ] | |
| # quaternion: eigenvector corresponding to most positive eigenvalue | |
| w, V = numpy.linalg.eigh(N) | |
| q = V[:, numpy.argmax(w)] | |
| q /= vector_norm(q) # unit quaternion | |
| # homogeneous transformation matrix | |
| M = quaternion_matrix(q) | |
| if scale and not shear: | |
| # Affine transformation; scale is ratio of RMS deviations from centroid | |
| v0 *= v0 | |
| v1 *= v1 | |
| M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) | |
| # move centroids back | |
| M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0)) | |
| M /= M[ndims, ndims] | |
| return M | |
| def superimposition_matrix(v0, v1, scale=False, usesvd=True): | |
| """Return matrix to transform given 3D point set into second point set. | |
| v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points. | |
| The parameters scale and usesvd are explained in the more general | |
| affine_matrix_from_points function. | |
| The returned matrix is a similarity or Euclidean transformation matrix. | |
| This function has a fast C implementation in transformations.c. | |
| >>> v0 = numpy.random.rand(3, 10) | |
| >>> M = superimposition_matrix(v0, v0) | |
| >>> numpy.allclose(M, numpy.identity(4)) | |
| True | |
| >>> R = random_rotation_matrix(numpy.random.random(3)) | |
| >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]] | |
| >>> v1 = numpy.dot(R, v0) | |
| >>> M = superimposition_matrix(v0, v1) | |
| >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| True | |
| >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20 | |
| >>> v0[3] = 1 | |
| >>> v1 = numpy.dot(R, v0) | |
| >>> M = superimposition_matrix(v0, v1) | |
| >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| True | |
| >>> S = scale_matrix(random.random()) | |
| >>> T = translation_matrix(numpy.random.random(3)-0.5) | |
| >>> M = concatenate_matrices(T, R, S) | |
| >>> v1 = numpy.dot(M, v0) | |
| >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1) | |
| >>> M = superimposition_matrix(v0, v1, scale=True) | |
| >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| True | |
| >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | |
| >>> numpy.allclose(v1, numpy.dot(M, v0)) | |
| True | |
| >>> v = numpy.empty((4, 100, 3)) | |
| >>> v[:, :, 0] = v0 | |
| >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False) | |
| >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) | |
| True | |
| """ | |
| v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] | |
| v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] | |
| return affine_matrix_from_points(v0, v1, shear=False, scale=scale, usesvd=usesvd) | |
| def euler_matrix(ai, aj, ak, axes="sxyz"): | |
| """Return homogeneous rotation matrix from Euler angles and axis sequence. | |
| ai, aj, ak : Euler's roll, pitch and yaw angles | |
| axes : One of 24 axis sequences as string or encoded tuple | |
| >>> R = euler_matrix(1, 2, 3, 'syxz') | |
| >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) | |
| True | |
| >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) | |
| >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) | |
| True | |
| >>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5) | |
| >>> for axes in _AXES2TUPLE.keys(): | |
| ... R = euler_matrix(ai, aj, ak, axes) | |
| >>> for axes in _TUPLE2AXES.keys(): | |
| ... R = euler_matrix(ai, aj, ak, axes) | |
| """ | |
| try: | |
| firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] | |
| except (AttributeError, KeyError): | |
| _TUPLE2AXES[axes] # validation | |
| firstaxis, parity, repetition, frame = axes | |
| i = firstaxis | |
| j = _NEXT_AXIS[i + parity] | |
| k = _NEXT_AXIS[i - parity + 1] | |
| if frame: | |
| ai, ak = ak, ai | |
| if parity: | |
| ai, aj, ak = -ai, -aj, -ak | |
| si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) | |
| ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) | |
| cc, cs = ci * ck, ci * sk | |
| sc, ss = si * ck, si * sk | |
| M = numpy.identity(4) | |
| if repetition: | |
| M[i, i] = cj | |
| M[i, j] = sj * si | |
| M[i, k] = sj * ci | |
| M[j, i] = sj * sk | |
| M[j, j] = -cj * ss + cc | |
| M[j, k] = -cj * cs - sc | |
| M[k, i] = -sj * ck | |
| M[k, j] = cj * sc + cs | |
| M[k, k] = cj * cc - ss | |
| else: | |
| M[i, i] = cj * ck | |
| M[i, j] = sj * sc - cs | |
| M[i, k] = sj * cc + ss | |
| M[j, i] = cj * sk | |
| M[j, j] = sj * ss + cc | |
| M[j, k] = sj * cs - sc | |
| M[k, i] = -sj | |
| M[k, j] = cj * si | |
| M[k, k] = cj * ci | |
| return M | |
| def euler_from_matrix(matrix, axes="sxyz"): | |
| """Return Euler angles from rotation matrix for specified axis sequence. | |
| axes : One of 24 axis sequences as string or encoded tuple | |
| Note that many Euler angle triplets can describe one matrix. | |
| >>> R0 = euler_matrix(1, 2, 3, 'syxz') | |
| >>> al, be, ga = euler_from_matrix(R0, 'syxz') | |
| >>> R1 = euler_matrix(al, be, ga, 'syxz') | |
| >>> numpy.allclose(R0, R1) | |
| True | |
| >>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5) | |
| >>> for axes in _AXES2TUPLE.keys(): | |
| ... R0 = euler_matrix(axes=axes, *angles) | |
| ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) | |
| ... if not numpy.allclose(R0, R1): print(axes, "failed") | |
| """ | |
| try: | |
| firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
| except (AttributeError, KeyError): | |
| _TUPLE2AXES[axes] # validation | |
| firstaxis, parity, repetition, frame = axes | |
| i = firstaxis | |
| j = _NEXT_AXIS[i + parity] | |
| k = _NEXT_AXIS[i - parity + 1] | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] | |
| if repetition: | |
| sy = math.sqrt(M[i, j] * M[i, j] + M[i, k] * M[i, k]) | |
| if sy > _EPS: | |
| ax = math.atan2(M[i, j], M[i, k]) | |
| ay = math.atan2(sy, M[i, i]) | |
| az = math.atan2(M[j, i], -M[k, i]) | |
| else: | |
| ax = math.atan2(-M[j, k], M[j, j]) | |
| ay = math.atan2(sy, M[i, i]) | |
| az = 0.0 | |
| else: | |
| cy = math.sqrt(M[i, i] * M[i, i] + M[j, i] * M[j, i]) | |
| if cy > _EPS: | |
| ax = math.atan2(M[k, j], M[k, k]) | |
| ay = math.atan2(-M[k, i], cy) | |
| az = math.atan2(M[j, i], M[i, i]) | |
| else: | |
| ax = math.atan2(-M[j, k], M[j, j]) | |
| ay = math.atan2(-M[k, i], cy) | |
| az = 0.0 | |
| if parity: | |
| ax, ay, az = -ax, -ay, -az | |
| if frame: | |
| ax, az = az, ax | |
| return ax, ay, az | |
| def euler_from_quaternion(quaternion, axes="sxyz"): | |
| """Return Euler angles from quaternion for specified axis sequence. | |
| >>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0]) | |
| >>> numpy.allclose(angles, [0.123, 0, 0]) | |
| True | |
| """ | |
| return euler_from_matrix(quaternion_matrix(quaternion), axes) | |
| def quaternion_from_euler(ai, aj, ak, axes="sxyz"): | |
| """Return quaternion from Euler angles and axis sequence. | |
| ai, aj, ak : Euler's roll, pitch and yaw angles | |
| axes : One of 24 axis sequences as string or encoded tuple | |
| >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') | |
| >>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435]) | |
| True | |
| """ | |
| try: | |
| firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
| except (AttributeError, KeyError): | |
| _TUPLE2AXES[axes] # validation | |
| firstaxis, parity, repetition, frame = axes | |
| i = firstaxis + 1 | |
| j = _NEXT_AXIS[i + parity - 1] + 1 | |
| k = _NEXT_AXIS[i - parity] + 1 | |
| if frame: | |
| ai, ak = ak, ai | |
| if parity: | |
| aj = -aj | |
| ai /= 2.0 | |
| aj /= 2.0 | |
| ak /= 2.0 | |
| ci = math.cos(ai) | |
| si = math.sin(ai) | |
| cj = math.cos(aj) | |
| sj = math.sin(aj) | |
| ck = math.cos(ak) | |
| sk = math.sin(ak) | |
| cc = ci * ck | |
| cs = ci * sk | |
| sc = si * ck | |
| ss = si * sk | |
| q = numpy.empty((4,)) | |
| if repetition: | |
| q[0] = cj * (cc - ss) | |
| q[i] = cj * (cs + sc) | |
| q[j] = sj * (cc + ss) | |
| q[k] = sj * (cs - sc) | |
| else: | |
| q[0] = cj * cc + sj * ss | |
| q[i] = cj * sc - sj * cs | |
| q[j] = cj * ss + sj * cc | |
| q[k] = cj * cs - sj * sc | |
| if parity: | |
| q[j] *= -1.0 | |
| return q | |
| def quaternion_about_axis(angle, axis): | |
| """Return quaternion for rotation about axis. | |
| >>> q = quaternion_about_axis(0.123, [1, 0, 0]) | |
| >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0]) | |
| True | |
| """ | |
| q = numpy.array([0.0, axis[0], axis[1], axis[2]]) | |
| qlen = vector_norm(q) | |
| if qlen > _EPS: | |
| q *= math.sin(angle / 2.0) / qlen | |
| q[0] = math.cos(angle / 2.0) | |
| return q | |
| def quaternion_matrix(quaternion): | |
| """Return homogeneous rotation matrix from quaternion. | |
| >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) | |
| >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) | |
| True | |
| >>> M = quaternion_matrix([1, 0, 0, 0]) | |
| >>> numpy.allclose(M, numpy.identity(4)) | |
| True | |
| >>> M = quaternion_matrix([0, 1, 0, 0]) | |
| >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) | |
| True | |
| """ | |
| q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
| n = numpy.dot(q, q) | |
| if n < _EPS: | |
| return numpy.identity(4) | |
| q *= math.sqrt(2.0 / n) | |
| q = numpy.outer(q, q) | |
| return numpy.array( | |
| [ | |
| [1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0], 0.0], | |
| [q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0], 0.0], | |
| [q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2], 0.0], | |
| [0.0, 0.0, 0.0, 1.0], | |
| ] | |
| ) | |
| def quaternion_from_matrix(matrix, isprecise=False): | |
| """Return quaternion from rotation matrix. | |
| If isprecise is True, the input matrix is assumed to be a precise rotation | |
| matrix and a faster algorithm is used. | |
| >>> q = quaternion_from_matrix(numpy.identity(4), True) | |
| >>> numpy.allclose(q, [1, 0, 0, 0]) | |
| True | |
| >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1])) | |
| >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0]) | |
| True | |
| >>> R = rotation_matrix(0.123, (1, 2, 3)) | |
| >>> q = quaternion_from_matrix(R, True) | |
| >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786]) | |
| True | |
| >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0], | |
| ... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]] | |
| >>> q = quaternion_from_matrix(R) | |
| >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611]) | |
| True | |
| >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0], | |
| ... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]] | |
| >>> q = quaternion_from_matrix(R) | |
| >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603]) | |
| True | |
| >>> R = random_rotation_matrix() | |
| >>> q = quaternion_from_matrix(R) | |
| >>> is_same_transform(R, quaternion_matrix(q)) | |
| True | |
| >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0) | |
| >>> numpy.allclose(quaternion_from_matrix(R, isprecise=False), | |
| ... quaternion_from_matrix(R, isprecise=True)) | |
| True | |
| """ | |
| M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] | |
| if isprecise: | |
| q = numpy.empty((4,)) | |
| t = numpy.trace(M) | |
| if t > M[3, 3]: | |
| q[0] = t | |
| q[3] = M[1, 0] - M[0, 1] | |
| q[2] = M[0, 2] - M[2, 0] | |
| q[1] = M[2, 1] - M[1, 2] | |
| else: | |
| i, j, k = 1, 2, 3 | |
| if M[1, 1] > M[0, 0]: | |
| i, j, k = 2, 3, 1 | |
| if M[2, 2] > M[i, i]: | |
| i, j, k = 3, 1, 2 | |
| t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] | |
| q[i] = t | |
| q[j] = M[i, j] + M[j, i] | |
| q[k] = M[k, i] + M[i, k] | |
| q[3] = M[k, j] - M[j, k] | |
| q *= 0.5 / math.sqrt(t * M[3, 3]) | |
| else: | |
| m00 = M[0, 0] | |
| m01 = M[0, 1] | |
| m02 = M[0, 2] | |
| m10 = M[1, 0] | |
| m11 = M[1, 1] | |
| m12 = M[1, 2] | |
| m20 = M[2, 0] | |
| m21 = M[2, 1] | |
| m22 = M[2, 2] | |
| # symmetric matrix K | |
| K = numpy.array( | |
| [ | |
| [m00 - m11 - m22, 0.0, 0.0, 0.0], | |
| [m01 + m10, m11 - m00 - m22, 0.0, 0.0], | |
| [m02 + m20, m12 + m21, m22 - m00 - m11, 0.0], | |
| [m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22], | |
| ] | |
| ) | |
| K /= 3.0 | |
| # quaternion is eigenvector of K that corresponds to largest eigenvalue | |
| w, V = numpy.linalg.eigh(K) | |
| q = V[[3, 0, 1, 2], numpy.argmax(w)] | |
| if q[0] < 0.0: | |
| numpy.negative(q, q) | |
| return q | |
| def quaternion_multiply(quaternion1, quaternion0): | |
| """Return multiplication of two quaternions. | |
| >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7]) | |
| >>> numpy.allclose(q, [28, -44, -14, 48]) | |
| True | |
| """ | |
| w0, x0, y0, z0 = quaternion0 | |
| w1, x1, y1, z1 = quaternion1 | |
| return numpy.array( | |
| [ | |
| -x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0, | |
| x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0, | |
| -x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0, | |
| x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0, | |
| ], | |
| dtype=numpy.float64, | |
| ) | |
| def quaternion_conjugate(quaternion): | |
| """Return conjugate of quaternion. | |
| >>> q0 = random_quaternion() | |
| >>> q1 = quaternion_conjugate(q0) | |
| >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:]) | |
| True | |
| """ | |
| q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
| numpy.negative(q[1:], q[1:]) | |
| return q | |
| def quaternion_inverse(quaternion): | |
| """Return inverse of quaternion. | |
| >>> q0 = random_quaternion() | |
| >>> q1 = quaternion_inverse(q0) | |
| >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0]) | |
| True | |
| """ | |
| q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
| numpy.negative(q[1:], q[1:]) | |
| return q / numpy.dot(q, q) | |
| def quaternion_real(quaternion): | |
| """Return real part of quaternion. | |
| >>> quaternion_real([3, 0, 1, 2]) | |
| 3.0 | |
| """ | |
| return float(quaternion[0]) | |
| def quaternion_imag(quaternion): | |
| """Return imaginary part of quaternion. | |
| >>> quaternion_imag([3, 0, 1, 2]) | |
| array([ 0., 1., 2.]) | |
| """ | |
| return numpy.array(quaternion[1:4], dtype=numpy.float64, copy=True) | |
| def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): | |
| """Return spherical linear interpolation between two quaternions. | |
| >>> q0 = random_quaternion() | |
| >>> q1 = random_quaternion() | |
| >>> q = quaternion_slerp(q0, q1, 0) | |
| >>> numpy.allclose(q, q0) | |
| True | |
| >>> q = quaternion_slerp(q0, q1, 1, 1) | |
| >>> numpy.allclose(q, q1) | |
| True | |
| >>> q = quaternion_slerp(q0, q1, 0.5) | |
| >>> angle = math.acos(numpy.dot(q0, q)) | |
| >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \ | |
| numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle) | |
| True | |
| """ | |
| q0 = unit_vector(quat0[:4]) | |
| q1 = unit_vector(quat1[:4]) | |
| if fraction == 0.0: | |
| return q0 | |
| elif fraction == 1.0: | |
| return q1 | |
| d = numpy.dot(q0, q1) | |
| if abs(abs(d) - 1.0) < _EPS: | |
| return q0 | |
| if shortestpath and d < 0.0: | |
| # invert rotation | |
| d = -d | |
| numpy.negative(q1, q1) | |
| angle = math.acos(d) + spin * math.pi | |
| if abs(angle) < _EPS: | |
| return q0 | |
| isin = 1.0 / math.sin(angle) | |
| q0 *= math.sin((1.0 - fraction) * angle) * isin | |
| q1 *= math.sin(fraction * angle) * isin | |
| q0 += q1 | |
| return q0 | |
| def random_quaternion(rand=None): | |
| """Return uniform random unit quaternion. | |
| rand: array like or None | |
| Three independent random variables that are uniformly distributed | |
| between 0 and 1. | |
| >>> q = random_quaternion() | |
| >>> numpy.allclose(1, vector_norm(q)) | |
| True | |
| >>> q = random_quaternion(numpy.random.random(3)) | |
| >>> len(q.shape), q.shape[0]==4 | |
| (1, True) | |
| """ | |
| if rand is None: | |
| rand = numpy.random.rand(3) | |
| else: | |
| assert len(rand) == 3 | |
| r1 = numpy.sqrt(1.0 - rand[0]) | |
| r2 = numpy.sqrt(rand[0]) | |
| pi2 = math.pi * 2.0 | |
| t1 = pi2 * rand[1] | |
| t2 = pi2 * rand[2] | |
| return numpy.array( | |
| [numpy.cos(t2) * r2, numpy.sin(t1) * r1, numpy.cos(t1) * r1, numpy.sin(t2) * r2] | |
| ) | |
| def random_rotation_matrix(rand=None): | |
| """Return uniform random rotation matrix. | |
| rand: array like | |
| Three independent random variables that are uniformly distributed | |
| between 0 and 1 for each returned quaternion. | |
| >>> R = random_rotation_matrix() | |
| >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4)) | |
| True | |
| """ | |
| return quaternion_matrix(random_quaternion(rand)) | |
| class Arcball(object): | |
| """Virtual Trackball Control. | |
| >>> ball = Arcball() | |
| >>> ball = Arcball(initial=numpy.identity(4)) | |
| >>> ball.place([320, 320], 320) | |
| >>> ball.down([500, 250]) | |
| >>> ball.drag([475, 275]) | |
| >>> R = ball.matrix() | |
| >>> numpy.allclose(numpy.sum(R), 3.90583455) | |
| True | |
| >>> ball = Arcball(initial=[1, 0, 0, 0]) | |
| >>> ball.place([320, 320], 320) | |
| >>> ball.setaxes([1, 1, 0], [-1, 1, 0]) | |
| >>> ball.constrain = True | |
| >>> ball.down([400, 200]) | |
| >>> ball.drag([200, 400]) | |
| >>> R = ball.matrix() | |
| >>> numpy.allclose(numpy.sum(R), 0.2055924) | |
| True | |
| >>> ball.next() | |
| """ | |
| def __init__(self, initial=None): | |
| """Initialize virtual trackball control. | |
| initial : quaternion or rotation matrix | |
| """ | |
| self._axis = None | |
| self._axes = None | |
| self._radius = 1.0 | |
| self._center = [0.0, 0.0] | |
| self._vdown = numpy.array([0.0, 0.0, 1.0]) | |
| self._constrain = False | |
| if initial is None: | |
| self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0]) | |
| else: | |
| initial = numpy.array(initial, dtype=numpy.float64) | |
| if initial.shape == (4, 4): | |
| self._qdown = quaternion_from_matrix(initial) | |
| elif initial.shape == (4,): | |
| initial /= vector_norm(initial) | |
| self._qdown = initial | |
| else: | |
| raise ValueError("initial not a quaternion or matrix") | |
| self._qnow = self._qpre = self._qdown | |
| def place(self, center, radius): | |
| """Place Arcball, e.g. when window size changes. | |
| center : sequence[2] | |
| Window coordinates of trackball center. | |
| radius : float | |
| Radius of trackball in window coordinates. | |
| """ | |
| self._radius = float(radius) | |
| self._center[0] = center[0] | |
| self._center[1] = center[1] | |
| def setaxes(self, *axes): | |
| """Set axes to constrain rotations.""" | |
| if axes is None: | |
| self._axes = None | |
| else: | |
| self._axes = [unit_vector(axis) for axis in axes] | |
| def constrain(self): | |
| """Return state of constrain to axis mode.""" | |
| return self._constrain | |
| def constrain(self, value): | |
| """Set state of constrain to axis mode.""" | |
| self._constrain = bool(value) | |
| def down(self, point): | |
| """Set initial cursor window coordinates and pick constrain-axis.""" | |
| self._vdown = arcball_map_to_sphere(point, self._center, self._radius) | |
| self._qdown = self._qpre = self._qnow | |
| if self._constrain and self._axes is not None: | |
| self._axis = arcball_nearest_axis(self._vdown, self._axes) | |
| self._vdown = arcball_constrain_to_axis(self._vdown, self._axis) | |
| else: | |
| self._axis = None | |
| def drag(self, point): | |
| """Update current cursor window coordinates.""" | |
| vnow = arcball_map_to_sphere(point, self._center, self._radius) | |
| if self._axis is not None: | |
| vnow = arcball_constrain_to_axis(vnow, self._axis) | |
| self._qpre = self._qnow | |
| t = numpy.cross(self._vdown, vnow) | |
| if numpy.dot(t, t) < _EPS: | |
| self._qnow = self._qdown | |
| else: | |
| q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]] | |
| self._qnow = quaternion_multiply(q, self._qdown) | |
| def next(self, acceleration=0.0): | |
| """Continue rotation in direction of last drag.""" | |
| q = quaternion_slerp(self._qpre, self._qnow, 2.0 + acceleration, False) | |
| self._qpre, self._qnow = self._qnow, q | |
| def matrix(self): | |
| """Return homogeneous rotation matrix.""" | |
| return quaternion_matrix(self._qnow) | |
| def arcball_map_to_sphere(point, center, radius): | |
| """Return unit sphere coordinates from window coordinates.""" | |
| v0 = (point[0] - center[0]) / radius | |
| v1 = (center[1] - point[1]) / radius | |
| n = v0 * v0 + v1 * v1 | |
| if n > 1.0: | |
| # position outside of sphere | |
| n = math.sqrt(n) | |
| return numpy.array([v0 / n, v1 / n, 0.0]) | |
| else: | |
| return numpy.array([v0, v1, math.sqrt(1.0 - n)]) | |
| def arcball_constrain_to_axis(point, axis): | |
| """Return sphere point perpendicular to axis.""" | |
| v = numpy.array(point, dtype=numpy.float64, copy=True) | |
| a = numpy.array(axis, dtype=numpy.float64, copy=True) | |
| v -= a * numpy.dot(a, v) # on plane | |
| n = vector_norm(v) | |
| if n > _EPS: | |
| if v[2] < 0.0: | |
| numpy.negative(v, v) | |
| v /= n | |
| return v | |
| if a[2] == 1.0: | |
| return numpy.array([1.0, 0.0, 0.0]) | |
| return unit_vector([-a[1], a[0], 0.0]) | |
| def arcball_nearest_axis(point, axes): | |
| """Return axis, which arc is nearest to point.""" | |
| point = numpy.array(point, dtype=numpy.float64, copy=False) | |
| nearest = None | |
| mx = -1.0 | |
| for axis in axes: | |
| t = numpy.dot(arcball_constrain_to_axis(point, axis), point) | |
| if t > mx: | |
| nearest = axis | |
| mx = t | |
| return nearest | |
| # epsilon for testing whether a number is close to zero | |
| _EPS = numpy.finfo(float).eps * 4.0 | |
| # axis sequences for Euler angles | |
| _NEXT_AXIS = [1, 2, 0, 1] | |
| # map axes strings to/from tuples of inner axis, parity, repetition, frame | |
| _AXES2TUPLE = { | |
| "sxyz": (0, 0, 0, 0), | |
| "sxyx": (0, 0, 1, 0), | |
| "sxzy": (0, 1, 0, 0), | |
| "sxzx": (0, 1, 1, 0), | |
| "syzx": (1, 0, 0, 0), | |
| "syzy": (1, 0, 1, 0), | |
| "syxz": (1, 1, 0, 0), | |
| "syxy": (1, 1, 1, 0), | |
| "szxy": (2, 0, 0, 0), | |
| "szxz": (2, 0, 1, 0), | |
| "szyx": (2, 1, 0, 0), | |
| "szyz": (2, 1, 1, 0), | |
| "rzyx": (0, 0, 0, 1), | |
| "rxyx": (0, 0, 1, 1), | |
| "ryzx": (0, 1, 0, 1), | |
| "rxzx": (0, 1, 1, 1), | |
| "rxzy": (1, 0, 0, 1), | |
| "ryzy": (1, 0, 1, 1), | |
| "rzxy": (1, 1, 0, 1), | |
| "ryxy": (1, 1, 1, 1), | |
| "ryxz": (2, 0, 0, 1), | |
| "rzxz": (2, 0, 1, 1), | |
| "rxyz": (2, 1, 0, 1), | |
| "rzyz": (2, 1, 1, 1), | |
| } | |
| _TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) | |
| def vector_norm(data, axis=None, out=None): | |
| """Return length, i.e. Euclidean norm, of ndarray along axis. | |
| >>> v = numpy.random.random(3) | |
| >>> n = vector_norm(v) | |
| >>> numpy.allclose(n, numpy.linalg.norm(v)) | |
| True | |
| >>> v = numpy.random.rand(6, 5, 3) | |
| >>> n = vector_norm(v, axis=-1) | |
| >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) | |
| True | |
| >>> n = vector_norm(v, axis=1) | |
| >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
| True | |
| >>> v = numpy.random.rand(5, 4, 3) | |
| >>> n = numpy.empty((5, 3)) | |
| >>> vector_norm(v, axis=1, out=n) | |
| >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
| True | |
| >>> vector_norm([]) | |
| 0.0 | |
| >>> vector_norm([1]) | |
| 1.0 | |
| """ | |
| data = numpy.array(data, dtype=numpy.float64, copy=True) | |
| if out is None: | |
| if data.ndim == 1: | |
| return math.sqrt(numpy.dot(data, data)) | |
| data *= data | |
| out = numpy.atleast_1d(numpy.sum(data, axis=axis)) | |
| numpy.sqrt(out, out) | |
| return out | |
| else: | |
| data *= data | |
| numpy.sum(data, axis=axis, out=out) | |
| numpy.sqrt(out, out) | |
| def unit_vector(data, axis=None, out=None): | |
| """Return ndarray normalized by length, i.e. Euclidean norm, along axis. | |
| >>> v0 = numpy.random.random(3) | |
| >>> v1 = unit_vector(v0) | |
| >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) | |
| True | |
| >>> v0 = numpy.random.rand(5, 4, 3) | |
| >>> v1 = unit_vector(v0, axis=-1) | |
| >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) | |
| >>> numpy.allclose(v1, v2) | |
| True | |
| >>> v1 = unit_vector(v0, axis=1) | |
| >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) | |
| >>> numpy.allclose(v1, v2) | |
| True | |
| >>> v1 = numpy.empty((5, 4, 3)) | |
| >>> unit_vector(v0, axis=1, out=v1) | |
| >>> numpy.allclose(v1, v2) | |
| True | |
| >>> list(unit_vector([])) | |
| [] | |
| >>> list(unit_vector([1])) | |
| [1.0] | |
| """ | |
| if out is None: | |
| data = numpy.array(data, dtype=numpy.float64, copy=True) | |
| if data.ndim == 1: | |
| data /= math.sqrt(numpy.dot(data, data)) | |
| return data | |
| else: | |
| if out is not data: | |
| out[:] = numpy.array(data, copy=False) | |
| data = out | |
| length = numpy.atleast_1d(numpy.sum(data * data, axis)) | |
| numpy.sqrt(length, length) | |
| if axis is not None: | |
| length = numpy.expand_dims(length, axis) | |
| data /= length | |
| if out is None: | |
| return data | |
| def random_vector(size): | |
| """Return array of random doubles in the half-open interval [0.0, 1.0). | |
| >>> v = random_vector(10000) | |
| >>> numpy.all(v >= 0) and numpy.all(v < 1) | |
| True | |
| >>> v0 = random_vector(10) | |
| >>> v1 = random_vector(10) | |
| >>> numpy.any(v0 == v1) | |
| False | |
| """ | |
| return numpy.random.random(size) | |
| def vector_product(v0, v1, axis=0): | |
| """Return vector perpendicular to vectors. | |
| >>> v = vector_product([2, 0, 0], [0, 3, 0]) | |
| >>> numpy.allclose(v, [0, 0, 6]) | |
| True | |
| >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | |
| >>> v1 = [[3], [0], [0]] | |
| >>> v = vector_product(v0, v1) | |
| >>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]]) | |
| True | |
| >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | |
| >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | |
| >>> v = vector_product(v0, v1, axis=1) | |
| >>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]]) | |
| True | |
| """ | |
| return numpy.cross(v0, v1, axis=axis) | |
| def angle_between_vectors(v0, v1, directed=True, axis=0): | |
| """Return angle between vectors. | |
| If directed is False, the input vectors are interpreted as undirected axes, | |
| i.e. the maximum angle is pi/2. | |
| >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3]) | |
| >>> numpy.allclose(a, math.pi) | |
| True | |
| >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False) | |
| >>> numpy.allclose(a, 0) | |
| True | |
| >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] | |
| >>> v1 = [[3], [0], [0]] | |
| >>> a = angle_between_vectors(v0, v1) | |
| >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532]) | |
| True | |
| >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] | |
| >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] | |
| >>> a = angle_between_vectors(v0, v1, axis=1) | |
| >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532]) | |
| True | |
| """ | |
| v0 = numpy.array(v0, dtype=numpy.float64, copy=False) | |
| v1 = numpy.array(v1, dtype=numpy.float64, copy=False) | |
| dot = numpy.sum(v0 * v1, axis=axis) | |
| dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis) | |
| return numpy.arccos(dot if directed else numpy.fabs(dot)) | |
| def inverse_matrix(matrix): | |
| """Return inverse of square transformation matrix. | |
| >>> M0 = random_rotation_matrix() | |
| >>> M1 = inverse_matrix(M0.T) | |
| >>> numpy.allclose(M1, numpy.linalg.inv(M0.T)) | |
| True | |
| >>> for size in range(1, 7): | |
| ... M0 = numpy.random.rand(size, size) | |
| ... M1 = inverse_matrix(M0) | |
| ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size) | |
| """ | |
| return numpy.linalg.inv(matrix) | |
| def concatenate_matrices(*matrices): | |
| """Return concatenation of series of transformation matrices. | |
| >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5 | |
| >>> numpy.allclose(M, concatenate_matrices(M)) | |
| True | |
| >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T)) | |
| True | |
| """ | |
| M = numpy.identity(4) | |
| for i in matrices: | |
| M = numpy.dot(M, i) | |
| return M | |
| def is_same_transform(matrix0, matrix1): | |
| """Return True if two matrices perform same transformation. | |
| >>> is_same_transform(numpy.identity(4), numpy.identity(4)) | |
| True | |
| >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) | |
| False | |
| """ | |
| matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) | |
| matrix0 /= matrix0[3, 3] | |
| matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) | |
| matrix1 /= matrix1[3, 3] | |
| return numpy.allclose(matrix0, matrix1) | |
| def _import_module(name, package=None, warn=True, prefix="_py_", ignore="_"): | |
| """Try import all public attributes from module into global namespace. | |
| Existing attributes with name clashes are renamed with prefix. | |
| Attributes starting with underscore are ignored by default. | |
| Return True on successful import. | |
| """ | |
| import warnings | |
| from importlib import import_module | |
| try: | |
| if not package: | |
| module = import_module(name) | |
| else: | |
| module = import_module("." + name, package=package) | |
| except ImportError: | |
| if warn: | |
| # warnings.warn("failed to import module %s" % name) | |
| pass | |
| else: | |
| for attr in dir(module): | |
| if ignore and attr.startswith(ignore): | |
| continue | |
| if prefix: | |
| if attr in globals(): | |
| globals()[prefix + attr] = globals()[attr] | |
| elif warn: | |
| warnings.warn("no Python implementation of " + attr) | |
| globals()[attr] = getattr(module, attr) | |
| return True | |
| _import_module("_transformations") | |
| if __name__ == "__main__": | |
| import doctest | |
| import random # used in doctests | |
| numpy.set_printoptions(suppress=True, precision=5) | |
| doctest.testmod() | |