Spaces:
Build error
Build error
| # Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # utilitary functions for CroCo | |
| # -------------------------------------------------------- | |
| # References: | |
| # MAE: https://github.com/facebookresearch/mae | |
| # DeiT: https://github.com/facebookresearch/deit | |
| # BEiT: https://github.com/microsoft/unilm/tree/master/beit | |
| # -------------------------------------------------------- | |
| import builtins | |
| import datetime | |
| import os | |
| import time | |
| import math | |
| import json | |
| from collections import defaultdict, deque | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| from torch import inf | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None, max_iter=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) | |
| space_fmt = ':' + str(len(str(len_iterable))) + 'd' | |
| log_msg = [ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append('max mem: {memory:.0f}') | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for it,obj in enumerate(iterable): | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len_iterable - 1: | |
| eta_seconds = iter_time.global_avg * (len_iterable - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, len_iterable, eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, len_iterable, eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| if max_iter and it >= max_iter: | |
| break | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len_iterable)) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| builtin_print = builtins.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| force = force or (get_world_size() > 8) | |
| if is_master or force: | |
| now = datetime.datetime.now().time() | |
| builtin_print('[{}] '.format(now), end='') # print with time stamp | |
| builtin_print(*args, **kwargs) | |
| builtins.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def init_distributed_mode(args): | |
| nodist = args.nodist if hasattr(args,'nodist') else False | |
| if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| else: | |
| print('Not using distributed mode') | |
| setup_for_distributed(is_master=True) # hack | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}, gpu {}'.format( | |
| args.rank, args.dist_url, args.gpu), flush=True) | |
| torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| class NativeScalerWithGradNormCount: | |
| state_dict_key = "amp_scaler" | |
| def __init__(self, enabled=True): | |
| self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) | |
| def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): | |
| self._scaler.scale(loss).backward(create_graph=create_graph) | |
| if update_grad: | |
| if clip_grad is not None: | |
| assert parameters is not None | |
| self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
| else: | |
| self._scaler.unscale_(optimizer) | |
| norm = get_grad_norm_(parameters) | |
| self._scaler.step(optimizer) | |
| self._scaler.update() | |
| else: | |
| norm = None | |
| return norm | |
| def state_dict(self): | |
| return self._scaler.state_dict() | |
| def load_state_dict(self, state_dict): | |
| self._scaler.load_state_dict(state_dict) | |
| def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = [p for p in parameters if p.grad is not None] | |
| norm_type = float(norm_type) | |
| if len(parameters) == 0: | |
| return torch.tensor(0.) | |
| device = parameters[0].grad.device | |
| if norm_type == inf: | |
| total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
| else: | |
| total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) | |
| return total_norm | |
| def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None): | |
| output_dir = Path(args.output_dir) | |
| if fname is None: fname = str(epoch) | |
| checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname) | |
| to_save = { | |
| 'model': model_without_ddp.state_dict(), | |
| 'optimizer': optimizer.state_dict(), | |
| 'scaler': loss_scaler.state_dict(), | |
| 'args': args, | |
| 'epoch': epoch, | |
| } | |
| if best_so_far is not None: to_save['best_so_far'] = best_so_far | |
| print(f'>> Saving model to {checkpoint_path} ...') | |
| save_on_master(to_save, checkpoint_path) | |
| def load_model(args, model_without_ddp, optimizer, loss_scaler): | |
| args.start_epoch = 0 | |
| best_so_far = None | |
| if args.resume is not None: | |
| if args.resume.startswith('https'): | |
| checkpoint = torch.hub.load_state_dict_from_url( | |
| args.resume, map_location='cpu', check_hash=True) | |
| else: | |
| checkpoint = torch.load(args.resume, map_location='cpu') | |
| print("Resume checkpoint %s" % args.resume) | |
| model_without_ddp.load_state_dict(checkpoint['model'], strict=False) | |
| args.start_epoch = checkpoint['epoch'] + 1 | |
| optimizer.load_state_dict(checkpoint['optimizer']) | |
| if 'scaler' in checkpoint: | |
| loss_scaler.load_state_dict(checkpoint['scaler']) | |
| if 'best_so_far' in checkpoint: | |
| best_so_far = checkpoint['best_so_far'] | |
| print(" & best_so_far={:g}".format(best_so_far)) | |
| else: | |
| print("") | |
| print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='') | |
| return best_so_far | |
| def all_reduce_mean(x): | |
| world_size = get_world_size() | |
| if world_size > 1: | |
| x_reduce = torch.tensor(x).cuda() | |
| dist.all_reduce(x_reduce) | |
| x_reduce /= world_size | |
| return x_reduce.item() | |
| else: | |
| return x | |
| def _replace(text, src, tgt, rm=''): | |
| """ Advanced string replacement. | |
| Given a text: | |
| - replace all elements in src by the corresponding element in tgt | |
| - remove all elements in rm | |
| """ | |
| if len(tgt) == 1: | |
| tgt = tgt * len(src) | |
| assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" | |
| for s,t in zip(src, tgt): | |
| text = text.replace(s,t) | |
| for c in rm: | |
| text = text.replace(c,'') | |
| return text | |
| def filename( obj ): | |
| """ transform a python obj or cmd into a proper filename. | |
| - \1 gets replaced by slash '/' | |
| - \2 gets replaced by comma ',' | |
| """ | |
| if not isinstance(obj, str): | |
| obj = repr(obj) | |
| obj = str(obj).replace('()','') | |
| obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"') | |
| assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj | |
| return obj | |
| def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): | |
| if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): | |
| return 0 | |
| elif var_name.startswith("patch_embed"): | |
| return 0 | |
| elif var_name.startswith("enc_blocks"): | |
| layer_id = int(var_name.split('.')[1]) | |
| return layer_id + 1 | |
| elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black | |
| return enc_depth | |
| elif var_name.startswith('dec_blocks'): | |
| layer_id = int(var_name.split('.')[1]) | |
| return enc_depth + layer_id + 1 | |
| elif var_name.startswith('dec_norm'): # part of the last block | |
| return enc_depth + dec_depth | |
| elif any(var_name.startswith(k) for k in ['head','prediction_head']): | |
| return enc_depth + dec_depth + 1 | |
| else: | |
| raise NotImplementedError(var_name) | |
| def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]): | |
| parameter_group_names = {} | |
| parameter_group_vars = {} | |
| enc_depth, dec_depth = None, None | |
| # prepare layer decay values | |
| assert layer_decay==1.0 or 0.<layer_decay<1. | |
| if layer_decay<1.: | |
| enc_depth = model.enc_depth | |
| dec_depth = model.dec_depth if hasattr(model, 'dec_blocks') else 0 | |
| num_layers = enc_depth+dec_depth | |
| layer_decay_values = list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)) | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue # frozen weights | |
| # Assign weight decay values | |
| if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
| group_name = "no_decay" | |
| this_weight_decay = 0. | |
| else: | |
| group_name = "decay" | |
| this_weight_decay = weight_decay | |
| # Assign layer ID for LR scaling | |
| if layer_decay<1.: | |
| skip_scale = False | |
| layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth) | |
| group_name = "layer_%d_%s" % (layer_id, group_name) | |
| if name in no_lr_scale_list: | |
| skip_scale = True | |
| group_name = f'{group_name}_no_lr_scale' | |
| else: | |
| layer_id = 0 | |
| skip_scale = True | |
| if group_name not in parameter_group_names: | |
| if not skip_scale: | |
| scale = layer_decay_values[layer_id] | |
| else: | |
| scale = 1. | |
| parameter_group_names[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr_scale": scale | |
| } | |
| parameter_group_vars[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr_scale": scale | |
| } | |
| parameter_group_vars[group_name]["params"].append(param) | |
| parameter_group_names[group_name]["params"].append(name) | |
| print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
| return list(parameter_group_vars.values()) | |
| def adjust_learning_rate(optimizer, epoch, args): | |
| """Decay the learning rate with half-cycle cosine after warmup""" | |
| if epoch < args.warmup_epochs: | |
| lr = args.lr * epoch / args.warmup_epochs | |
| else: | |
| lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ | |
| (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) | |
| for param_group in optimizer.param_groups: | |
| if "lr_scale" in param_group: | |
| param_group["lr"] = lr * param_group["lr_scale"] | |
| else: | |
| param_group["lr"] = lr | |
| return lr | |