Spaces:
Build error
Build error
| import numpy as np | |
| def norm_kpt(K, kp): | |
| kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1) | |
| kp = np.matmul(kp, np.linalg.inv(K).T)[:, :2] | |
| return kp | |
| def unnorm_kp(K, kp): | |
| kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1) | |
| kp = np.matmul(kp, K.T)[:, :2] | |
| return kp | |
| def interpolate_depth(pos, depth): | |
| # pos:[y,x] | |
| ids = np.array(range(0, pos.shape[0])) | |
| h, w = depth.shape | |
| i = pos[:, 0] | |
| j = pos[:, 1] | |
| valid_corner = np.logical_and( | |
| np.logical_and(i > 0, i < h - 1), np.logical_and(j > 0, j < w - 1) | |
| ) | |
| i, j = i[valid_corner], j[valid_corner] | |
| ids = ids[valid_corner] | |
| i_top_left = np.floor(i).astype(np.int32) | |
| j_top_left = np.floor(j).astype(np.int32) | |
| i_top_right = np.floor(i).astype(np.int32) | |
| j_top_right = np.ceil(j).astype(np.int32) | |
| i_bottom_left = np.ceil(i).astype(np.int32) | |
| j_bottom_left = np.floor(j).astype(np.int32) | |
| i_bottom_right = np.ceil(i).astype(np.int32) | |
| j_bottom_right = np.ceil(j).astype(np.int32) | |
| # Valid depth | |
| depth_top_left, depth_top_right, depth_down_left, depth_down_right = ( | |
| depth[i_top_left, j_top_left], | |
| depth[i_top_right, j_top_right], | |
| depth[i_bottom_left, j_bottom_left], | |
| depth[i_bottom_right, j_bottom_right], | |
| ) | |
| valid_depth = np.logical_and( | |
| np.logical_and(depth_top_left > 0, depth_top_right > 0), | |
| np.logical_and(depth_down_left > 0, depth_down_left > 0), | |
| ) | |
| ids = ids[valid_depth] | |
| depth_top_left, depth_top_right, depth_down_left, depth_down_right = ( | |
| depth_top_left[valid_depth], | |
| depth_top_right[valid_depth], | |
| depth_down_left[valid_depth], | |
| depth_down_right[valid_depth], | |
| ) | |
| i, j, i_top_left, j_top_left = ( | |
| i[valid_depth], | |
| j[valid_depth], | |
| i_top_left[valid_depth], | |
| j_top_left[valid_depth], | |
| ) | |
| # Interpolation | |
| dist_i_top_left = i - i_top_left.astype(np.float32) | |
| dist_j_top_left = j - j_top_left.astype(np.float32) | |
| w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left) | |
| w_top_right = (1 - dist_i_top_left) * dist_j_top_left | |
| w_bottom_left = dist_i_top_left * (1 - dist_j_top_left) | |
| w_bottom_right = dist_i_top_left * dist_j_top_left | |
| interpolated_depth = ( | |
| w_top_left * depth_top_left | |
| + w_top_right * depth_top_right | |
| + w_bottom_left * depth_down_left | |
| + w_bottom_right * depth_down_right | |
| ) | |
| return [interpolated_depth, ids] | |
| def reprojection(depth_map, kpt, dR, dt, K1_img2depth, K1, K2): | |
| # warp kpt from img1 to img2 | |
| def swap_axis(data): | |
| return np.stack([data[:, 1], data[:, 0]], axis=-1) | |
| kp_depth = unnorm_kp(K1_img2depth, kpt) | |
| uv_depth = swap_axis(kp_depth) | |
| z, valid_idx = interpolate_depth(uv_depth, depth_map) | |
| norm_kp = norm_kpt(K1, kpt) | |
| norm_kp_valid = np.concatenate( | |
| [norm_kp[valid_idx, :], np.ones((len(valid_idx), 1))], axis=-1 | |
| ) | |
| xyz_valid = norm_kp_valid * z.reshape(-1, 1) | |
| xyz2 = np.matmul(xyz_valid, dR.T) + dt.reshape(1, 3) | |
| xy2 = xyz2[:, :2] / xyz2[:, 2:] | |
| kp2, valid = np.ones(kpt.shape) * 1e5, np.zeros(kpt.shape[0]) | |
| kp2[valid_idx] = unnorm_kp(K2, xy2) | |
| valid[valid_idx] = 1 | |
| return kp2, valid.astype(bool) | |
| def reprojection_2s(kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2): | |
| # size:H*W | |
| depth_size1, depth_size2 = [depth1.shape[0], depth1.shape[1]], [ | |
| depth2.shape[0], | |
| depth2.shape[1], | |
| ] | |
| scale_1 = [float(depth_size1[0]) / size1[0], float(depth_size1[1]) / size1[1], 1] | |
| scale_2 = [float(depth_size2[0]) / size2[0], float(depth_size2[1]) / size2[1], 1] | |
| K1_img2depth, K2_img2depth = np.diag(np.asarray(scale_1)), np.diag( | |
| np.asarray(scale_2) | |
| ) | |
| kp1_2_proj, valid1_2 = reprojection(depth1, kp1, dR, dt, K1_img2depth, K1, K2) | |
| kp2_1_proj, valid2_1 = reprojection( | |
| depth2, kp2, dR.T, -np.matmul(dR.T, dt), K2_img2depth, K2, K1 | |
| ) | |
| return [kp1_2_proj, kp2_1_proj], [valid1_2, valid2_1] | |
| def make_corr( | |
| kp1, | |
| kp2, | |
| desc1, | |
| desc2, | |
| depth1, | |
| depth2, | |
| K1, | |
| K2, | |
| dR, | |
| dt, | |
| size1, | |
| size2, | |
| corr_th, | |
| incorr_th, | |
| check_desc=False, | |
| ): | |
| # make reprojection | |
| [kp1_2, kp2_1], [valid1_2, valid2_1] = reprojection_2s( | |
| kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2 | |
| ) | |
| num_pts1, num_pts2 = kp1.shape[0], kp2.shape[0] | |
| # reprojection error | |
| dis_mat1 = np.sqrt( | |
| abs( | |
| (kp1**2).sum(1, keepdims=True) | |
| + (kp2_1**2).sum(1, keepdims=False)[np.newaxis] | |
| - 2 * np.matmul(kp1, kp2_1.T) | |
| ) | |
| ) | |
| dis_mat2 = np.sqrt( | |
| abs( | |
| (kp2**2).sum(1, keepdims=True) | |
| + (kp1_2**2).sum(1, keepdims=False)[np.newaxis] | |
| - 2 * np.matmul(kp2, kp1_2.T) | |
| ) | |
| ) | |
| repro_error = np.maximum(dis_mat1, dis_mat2.T) # n1*n2 | |
| # find corr index | |
| nn_sort1 = np.argmin(repro_error, axis=1) | |
| nn_sort2 = np.argmin(repro_error, axis=0) | |
| mask_mutual = nn_sort2[nn_sort1] == np.arange(kp1.shape[0]) | |
| mask_inlier = ( | |
| np.take_along_axis( | |
| repro_error, indices=nn_sort1[:, np.newaxis], axis=-1 | |
| ).squeeze(1) | |
| < corr_th | |
| ) | |
| mask = mask_mutual & mask_inlier | |
| corr_index = np.stack( | |
| [np.arange(num_pts1)[mask], np.arange(num_pts2)[nn_sort1[mask]]], axis=-1 | |
| ) | |
| if check_desc: | |
| # filter kpt in same pos using desc distance(e.g. DoG kpt) | |
| x1_valid, x2_valid = kp1[corr_index[:, 0]], kp2[corr_index[:, 1]] | |
| mask_samepos1 = np.logical_and( | |
| x1_valid[:, 0, np.newaxis] == kp1[np.newaxis, :, 0], | |
| x1_valid[:, 1, np.newaxis] == kp1[np.newaxis, :, 1], | |
| ) | |
| mask_samepos2 = np.logical_and( | |
| x2_valid[:, 0, np.newaxis] == kp2[np.newaxis, :, 0], | |
| x2_valid[:, 1, np.newaxis] == kp2[np.newaxis, :, 1], | |
| ) | |
| duplicated_mask = np.logical_or( | |
| mask_samepos1.sum(-1) > 1, mask_samepos2.sum(-1) > 1 | |
| ) | |
| duplicated_index = np.nonzero(duplicated_mask)[0] | |
| unique_corr_index = corr_index[~duplicated_mask] | |
| clean_duplicated_corr = [] | |
| for index in duplicated_index: | |
| cur_desc1, cur_desc2 = ( | |
| desc1[mask_samepos1[index]], | |
| desc2[mask_samepos2[index]], | |
| ) | |
| cur_desc_mat = np.matmul(cur_desc1, cur_desc2.T) | |
| cur_max_index = [ | |
| np.argmax(cur_desc_mat) // cur_desc_mat.shape[1], | |
| np.argmax(cur_desc_mat) % cur_desc_mat.shape[1], | |
| ] | |
| clean_duplicated_corr.append( | |
| np.stack( | |
| [ | |
| np.arange(num_pts1)[mask_samepos1[index]][cur_max_index[0]], | |
| np.arange(num_pts2)[mask_samepos2[index]][cur_max_index[1]], | |
| ] | |
| ) | |
| ) | |
| clean_corr_index = unique_corr_index | |
| if len(clean_duplicated_corr) != 0: | |
| clean_duplicated_corr = np.stack(clean_duplicated_corr, axis=0) | |
| clean_corr_index = np.concatenate( | |
| [clean_corr_index, clean_duplicated_corr], axis=0 | |
| ) | |
| else: | |
| clean_corr_index = corr_index | |
| # find incorr | |
| mask_incorr1 = np.min(dis_mat2.T[valid1_2], axis=-1) > incorr_th | |
| mask_incorr2 = np.min(dis_mat1.T[valid2_1], axis=-1) > incorr_th | |
| incorr_index1, incorr_index2 = ( | |
| np.arange(num_pts1)[valid1_2][mask_incorr1.squeeze()], | |
| np.arange(num_pts2)[valid2_1][mask_incorr2.squeeze()], | |
| ) | |
| return clean_corr_index, incorr_index1, incorr_index2 | |