anzorq commited on
Commit
5fad7fd
·
1 Parent(s): d4409f1

+ nsfw stub

Browse files
Files changed (1) hide show
  1. app.py +14 -11
app.py CHANGED
@@ -51,11 +51,11 @@ def inference(model, img, strength, prompt, neg_prompt, guidance, steps, width,
51
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
52
 
53
  if img is not None:
54
- return txt_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
55
  else:
56
- return img_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator)
57
 
58
- def img_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator=None):
59
 
60
  global current_model
61
  global pipe
@@ -71,18 +71,19 @@ def img_to_img(model, prompt, neg_prompt, guidance, steps, width, height, genera
71
  pipe = pipe.to("cuda")
72
 
73
  prompt = prompt_prefixes[current_model] + prompt
74
- image = pipe(
75
  prompt,
76
  negative_prompt=neg_prompt,
77
  num_inference_steps=int(steps),
78
  guidance_scale=guidance,
79
  width=width,
80
  height=height,
81
- generator=generator).images[0]
82
 
 
83
  return image
84
 
85
- def txt_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
86
 
87
  global current_model
88
  global pipe
@@ -100,7 +101,7 @@ def txt_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width,
100
  prompt = prompt_prefixes[current_model] + prompt
101
  ratio = min(height / img.height, width / img.width)
102
  img = img.resize((int(img.width * ratio), int(img.height * ratio)))
103
- image = pipe(
104
  prompt,
105
  negative_prompt=neg_prompt,
106
  init_image=img,
@@ -109,8 +110,9 @@ def txt_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width,
109
  guidance_scale=guidance,
110
  width=width,
111
  height=height,
112
- generator=generator).images[0]
113
-
 
114
  return image
115
 
116
 
@@ -159,6 +161,9 @@ with gr.Blocks(css=css) as demo:
159
  with gr.Column():
160
  model = gr.Dropdown(label="Model", choices=models, value=models[0])
161
  prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
 
 
 
162
  with gr.Tab("Options"):
163
 
164
  neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
@@ -173,8 +178,6 @@ with gr.Blocks(css=css) as demo:
173
 
174
  with gr.Column():
175
  image_out = gr.Image(height=512)
176
- run = gr.Button(value="Run")
177
- gr.Markdown(f"Running on: {device}")
178
 
179
  inputs = [model, image, strength, prompt, neg_prompt, guidance, steps, width, height, seed]
180
  prompt.submit(inference, inputs=inputs, outputs=image_out)
 
51
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
52
 
53
  if img is not None:
54
+ return img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
55
  else:
56
+ return txt_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator)
57
 
58
+ def txt_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator=None):
59
 
60
  global current_model
61
  global pipe
 
71
  pipe = pipe.to("cuda")
72
 
73
  prompt = prompt_prefixes[current_model] + prompt
74
+ results = pipe(
75
  prompt,
76
  negative_prompt=neg_prompt,
77
  num_inference_steps=int(steps),
78
  guidance_scale=guidance,
79
  width=width,
80
  height=height,
81
+ generator=generator)
82
 
83
+ image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png")
84
  return image
85
 
86
+ def img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
87
 
88
  global current_model
89
  global pipe
 
101
  prompt = prompt_prefixes[current_model] + prompt
102
  ratio = min(height / img.height, width / img.width)
103
  img = img.resize((int(img.width * ratio), int(img.height * ratio)))
104
+ results = pipe(
105
  prompt,
106
  negative_prompt=neg_prompt,
107
  init_image=img,
 
110
  guidance_scale=guidance,
111
  width=width,
112
  height=height,
113
+ generator=generator)
114
+
115
+ image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png")
116
  return image
117
 
118
 
 
161
  with gr.Column():
162
  model = gr.Dropdown(label="Model", choices=models, value=models[0])
163
  prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
164
+ run = gr.Button(value="Run")
165
+ gr.Markdown(f"Running on: {device}")
166
+
167
  with gr.Tab("Options"):
168
 
169
  neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
 
178
 
179
  with gr.Column():
180
  image_out = gr.Image(height=512)
 
 
181
 
182
  inputs = [model, image, strength, prompt, neg_prompt, guidance, steps, width, height, seed]
183
  prompt.submit(inference, inputs=inputs, outputs=image_out)