Spaces:
Sleeping
Sleeping
✨ add ability to load PDF
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import logging
|
2 |
import time
|
3 |
from pathlib import Path
|
@@ -5,6 +6,9 @@ from pathlib import Path
|
|
5 |
import gradio as gr
|
6 |
import nltk
|
7 |
from cleantext import clean
|
|
|
|
|
|
|
8 |
|
9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
10 |
from utils import load_example_filenames, truncate_word_count
|
@@ -101,6 +105,7 @@ def proc_submission(
|
|
101 |
|
102 |
def load_single_example_text(
|
103 |
example_path: str or Path,
|
|
|
104 |
):
|
105 |
"""
|
106 |
load_single_example - a helper function for the gradio module to load examples
|
@@ -110,14 +115,26 @@ def load_single_example_text(
|
|
110 |
global name_to_path
|
111 |
full_ex_path = name_to_path[example_path]
|
112 |
full_ex_path = Path(full_ex_path)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
text = clean(raw_text, lower=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return text
|
118 |
|
119 |
|
120 |
-
def load_uploaded_file(file_obj):
|
121 |
"""
|
122 |
load_uploaded_file - process an uploaded file
|
123 |
|
@@ -135,29 +152,52 @@ def load_uploaded_file(file_obj):
|
|
135 |
file_obj = file_obj[0]
|
136 |
file_path = Path(file_obj.name)
|
137 |
try:
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
return text
|
142 |
except Exception as e:
|
143 |
logging.info(f"Trying to load file with path {file_path}, error: {e}")
|
144 |
-
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."
|
145 |
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
name_to_path = load_example_filenames(_here / "examples")
|
153 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
154 |
demo = gr.Blocks()
|
155 |
|
156 |
with demo:
|
157 |
|
158 |
-
gr.Markdown("#
|
159 |
gr.Markdown(
|
160 |
-
"
|
161 |
)
|
162 |
with gr.Column():
|
163 |
|
|
|
1 |
+
import contextlib
|
2 |
import logging
|
3 |
import time
|
4 |
from pathlib import Path
|
|
|
6 |
import gradio as gr
|
7 |
import nltk
|
8 |
from cleantext import clean
|
9 |
+
from doctr.io import DocumentFile
|
10 |
+
from doctr.models import ocr_predictor
|
11 |
+
from pdf2text import convert_PDF_to_Text
|
12 |
|
13 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
14 |
from utils import load_example_filenames, truncate_word_count
|
|
|
105 |
|
106 |
def load_single_example_text(
|
107 |
example_path: str or Path,
|
108 |
+
max_pages=20,
|
109 |
):
|
110 |
"""
|
111 |
load_single_example - a helper function for the gradio module to load examples
|
|
|
115 |
global name_to_path
|
116 |
full_ex_path = name_to_path[example_path]
|
117 |
full_ex_path = Path(full_ex_path)
|
118 |
+
if full_ex_path.suffix == ".txt":
|
119 |
+
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
|
120 |
+
raw_text = f.read()
|
121 |
text = clean(raw_text, lower=False)
|
122 |
+
elif full_ex_path.suffix == ".pdf":
|
123 |
+
logging.info(f"Loading PDF file {full_ex_path}")
|
124 |
+
conversion_stats = convert_PDF_to_Text(
|
125 |
+
full_ex_path,
|
126 |
+
ocr_model=ocr_model,
|
127 |
+
max_pages=max_pages,
|
128 |
+
)
|
129 |
+
text = conversion_stats["converted_text"]
|
130 |
+
else:
|
131 |
+
logging.error(f"Unknown file type {full_ex_path.suffix}")
|
132 |
+
text = "ERROR - check example path"
|
133 |
+
|
134 |
return text
|
135 |
|
136 |
|
137 |
+
def load_uploaded_file(file_obj, max_pages=20):
|
138 |
"""
|
139 |
load_uploaded_file - process an uploaded file
|
140 |
|
|
|
152 |
file_obj = file_obj[0]
|
153 |
file_path = Path(file_obj.name)
|
154 |
try:
|
155 |
+
if file_path.suffix == ".txt":
|
156 |
+
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
157 |
+
raw_text = f.read()
|
158 |
+
text = clean(raw_text, lower=False)
|
159 |
+
elif file_path.suffix == ".pdf":
|
160 |
+
logging.info(f"Loading PDF file {file_path}")
|
161 |
+
conversion_stats = convert_PDF_to_Text(
|
162 |
+
file_path,
|
163 |
+
ocr_model=ocr_model,
|
164 |
+
max_pages=max_pages,
|
165 |
+
)
|
166 |
+
text = conversion_stats["converted_text"]
|
167 |
+
else:
|
168 |
+
logging.error(f"Unknown file type {file_path.suffix}")
|
169 |
+
text = "ERROR - check example path"
|
170 |
+
|
171 |
return text
|
172 |
except Exception as e:
|
173 |
logging.info(f"Trying to load file with path {file_path}, error: {e}")
|
174 |
+
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
|
175 |
|
176 |
|
177 |
if __name__ == "__main__":
|
178 |
+
logging.info("Starting app instance")
|
179 |
+
|
180 |
+
logging.info("Loading summ models")
|
181 |
+
model, tokenizer = load_model_and_tokenizer("pszemraj/pegasus-x-large-book-summary")
|
182 |
+
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/long-t5-tglobal-base-16384-book-summary")
|
183 |
+
|
184 |
+
logging.info("Loading OCR model")
|
185 |
+
with contextlib.redirect_stdout(None):
|
186 |
+
ocr_model = ocr_predictor(
|
187 |
+
"db_resnet50",
|
188 |
+
"crnn_mobilenet_v3_large",
|
189 |
+
pretrained=True,
|
190 |
+
assume_straight_pages=True,
|
191 |
+
)
|
192 |
name_to_path = load_example_filenames(_here / "examples")
|
193 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
194 |
demo = gr.Blocks()
|
195 |
|
196 |
with demo:
|
197 |
|
198 |
+
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
199 |
gr.Markdown(
|
200 |
+
"TODO: Add a description of the model and how it works, and a link to the paper"
|
201 |
)
|
202 |
with gr.Column():
|
203 |
|