Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
""" | |
pdf2text.py - convert pdf files to text files using OCR | |
""" | |
import logging | |
import os | |
import re | |
import shutil | |
import time | |
from datetime import date | |
from os.path import basename, dirname, join | |
from pathlib import Path | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s %(levelname)s %(message)s", | |
datefmt="%m/%d/%Y %I:%M:%S", | |
) | |
os.environ["USE_TORCH"] = "1" | |
from cleantext import clean | |
from doctr.io import DocumentFile | |
from doctr.models import ocr_predictor | |
from spellchecker import SpellChecker | |
def simple_rename(filepath, target_ext=".txt"): | |
"""simple_rename - get a new str to rename a file""" | |
_fp = Path(filepath) | |
basename = _fp.stem | |
return f"OCR_{basename}_{target_ext}" | |
def rm_local_text_files(name_contains="RESULT_"): | |
""" | |
rm_local_text_files - remove local text files | |
""" | |
files = [ | |
f | |
for f in Path.cwd().iterdir() | |
if f.is_file() and f.suffix == ".txt" and name_contains in f.name | |
] | |
logging.info(f"removing {len(files)} text files") | |
for f in files: | |
os.remove(f) | |
logging.info("done") | |
def corr( | |
s: str, | |
add_space_when_numerics=False, | |
exceptions=["e.g.", "i.e.", "etc.", "cf.", "vs.", "p."], | |
) -> str: | |
"""corrects spacing in a string | |
Args: | |
s (str): the string to correct | |
add_space_when_numerics (bool, optional): [add a space when a period is between two numbers, example 5.73]. Defaults to False. | |
exceptions (list, optional): [do not change these substrings]. Defaults to ['e.g.', 'i.e.', 'etc.', 'cf.', 'vs.', 'p.']. | |
Returns: | |
str: the corrected string | |
""" | |
if add_space_when_numerics: | |
s = re.sub(r"(\d)\.(\d)", r"\1. \2", s) | |
s = re.sub(r"\s+", " ", s) | |
s = re.sub(r'\s([?.!"](?:\s|$))', r"\1", s) | |
# fix space before apostrophe | |
s = re.sub(r"\s\'", r"'", s) | |
# fix space after apostrophe | |
s = re.sub(r"'\s", r"'", s) | |
# fix space before comma | |
s = re.sub(r"\s,", r",", s) | |
for e in exceptions: | |
expected_sub = re.sub(r"\s", "", e) | |
s = s.replace(expected_sub, e) | |
return s | |
def fix_punct_spaces(string: str) -> str: | |
""" | |
fix_punct_spaces - fix spaces around punctuation | |
:param str string: input string | |
:return str: string with spaces fixed | |
""" | |
fix_spaces = re.compile(r"\s*([?!.,]+(?:\s+[?!.,]+)*)\s*") | |
string = fix_spaces.sub(lambda x: "{} ".format(x.group(1).replace(" ", "")), string) | |
string = string.replace(" ' ", "'") | |
string = string.replace(' " ', '"') | |
return string.strip() | |
def clean_OCR(ugly_text: str) -> str: | |
""" | |
clean_OCR - clean up the OCR text | |
:param str ugly_text: input text to be cleaned | |
:return str: cleaned text | |
""" | |
# Remove all the newlines. | |
cleaned_text = ugly_text.replace("\n", " ") | |
# Remove all the tabs. | |
cleaned_text = cleaned_text.replace("\t", " ") | |
# Remove all the double spaces. | |
cleaned_text = cleaned_text.replace(" ", " ") | |
# Remove all the spaces at the beginning of the text. | |
cleaned_text = cleaned_text.lstrip() | |
# remove all instances of "- " and " - " | |
cleaned_text = cleaned_text.replace("- ", "") | |
cleaned_text = cleaned_text.replace(" -", "") | |
return fix_punct_spaces(cleaned_text) | |
def move2completed( | |
from_dir, filename, new_folder: str = "completed", verbose: bool = False | |
): | |
""" | |
move2completed - move a file to a new folder | |
""" | |
old_filepath = join(from_dir, filename) | |
new_filedirectory = join(from_dir, new_folder) | |
if not os.path.isdir(new_filedirectory): | |
os.mkdir(new_filedirectory) | |
if verbose: | |
print("created new directory for files at: \n", new_filedirectory) | |
new_filepath = join(new_filedirectory, filename) | |
try: | |
shutil.move(old_filepath, new_filepath) | |
logging.info("successfully moved the file {} to */completed.".format(filename)) | |
except: | |
logging.info( | |
"ERROR! unable to move file to \n{}. Please investigate".format( | |
new_filepath | |
) | |
) | |
custom_replace_list = { | |
"t0": "to", | |
"'$": "'s", | |
",,": ", ", | |
"_ ": " ", | |
" '": "'", | |
} | |
replace_corr_exceptions = { | |
"i. e.": "i.e.", | |
"e. g.": "e.g.", | |
"e. g": "e.g.", | |
" ,": ",", | |
} | |
spell = SpellChecker() | |
def check_word_spelling(word: str) -> bool: | |
""" | |
check_word_spelling - check the spelling of a word | |
Args: | |
word (str): word to check | |
Returns: | |
bool: True if word is spelled correctly, False if not | |
""" | |
misspelled = spell.unknown([word]) | |
return len(misspelled) == 0 | |
def eval_and_replace(text: str, match_token: str = "- ") -> str: | |
""" | |
eval_and_replace - conditionally replace all instances of a substring in a string based on whether the eliminated substring results in a valid word | |
Args: | |
text (str): text to evaluate | |
match_token (str, optional): token to replace. Defaults to "- ". | |
Returns: | |
str: text with replaced tokens | |
""" | |
if match_token not in text: | |
return text | |
else: | |
while True: | |
full_before_text = text.split(match_token, maxsplit=1)[0] | |
before_text = [ | |
char for char in full_before_text.split()[-1] if char.isalpha() | |
] | |
before_text = "".join(before_text) | |
full_after_text = text.split(match_token, maxsplit=1)[-1] | |
after_text = [char for char in full_after_text.split()[0] if char.isalpha()] | |
after_text = "".join(after_text) | |
full_text = before_text + after_text | |
if check_word_spelling(full_text): | |
text = full_before_text + full_after_text | |
else: | |
text = full_before_text + " " + full_after_text | |
if match_token not in text: | |
break | |
return text | |
def cleantxt_ocr(ugly_text, lower=False, lang: str = "en") -> str: | |
""" | |
cleantxt_ocr - clean text from OCR | |
https://pypi.org/project/clean-text/ | |
Args: | |
ugly_text (str): text to clean | |
lower (bool, optional): lowercase text. Defaults to False. | |
lang (str, optional): language of text. Defaults to "en". | |
Returns: | |
str: cleaned text | |
""" | |
cleaned_text = clean( | |
ugly_text, | |
fix_unicode=True, # fix various unicode errors | |
to_ascii=True, # transliterate to closest ASCII representation | |
lower=lower, # lowercase text | |
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them | |
no_urls=True, # replace all URLs with a special token | |
no_emails=True, # replace all email addresses with a special token | |
no_phone_numbers=True, # replace all phone numbers with a special token | |
no_numbers=False, # replace all numbers with a special token | |
no_digits=False, # replace all digits with a special token | |
no_currency_symbols=False, # replace all currency symbols with a special token | |
no_punct=False, # remove punctuations | |
replace_with_punct="", # instead of removing punctuations you may replace them | |
replace_with_url="this url", | |
replace_with_email="this email", | |
replace_with_phone_number="this phone number", | |
lang=lang, # set to 'de' for German special handling | |
) | |
return cleaned_text | |
def format_ocr_out(OCR_data): | |
"""format OCR output to text""" | |
if isinstance(OCR_data, list): | |
text = " ".join(OCR_data) | |
else: | |
text = str(OCR_data) | |
_clean = cleantxt_ocr(text) | |
return corr(_clean) | |
def postprocess(text: str) -> str: | |
"""to be used after recombining the lines""" | |
proc = corr(cleantxt_ocr(text)) | |
for k, v in custom_replace_list.items(): | |
proc = proc.replace(str(k), str(v)) | |
proc = corr(proc) | |
for k, v in replace_corr_exceptions.items(): | |
proc = proc.replace(str(k), str(v)) | |
return eval_and_replace(proc) | |
def result2text(result, as_text=False) -> str or list: | |
"""Convert OCR result to text""" | |
full_doc = [] | |
for i, page in enumerate(result.pages, start=1): | |
text = "" | |
for block in page.blocks: | |
text += "\n\t" | |
for line in block.lines: | |
for word in line.words: | |
# print(dir(word)) | |
text += word.value + " " | |
full_doc.append(text) | |
return "\n".join(full_doc) if as_text else full_doc | |
def convert_PDF_to_Text( | |
PDF_file, | |
ocr_model=None, | |
max_pages: int = 20, | |
) -> str: | |
""" | |
convert_PDF_to_Text - convert a PDF file to text | |
:param str PDF_file: path to PDF file | |
:param ocr_model: model to use for OCR, defaults to None (uses the default model) | |
:param int max_pages: maximum number of pages to process, defaults to 20 | |
:return str: text from PDF | |
""" | |
st = time.perf_counter() | |
PDF_file = Path(PDF_file) | |
ocr_model = ocr_predictor(pretrained=True) if ocr_model is None else ocr_model | |
logging.info(f"starting OCR on {PDF_file.name}") | |
doc = DocumentFile.from_pdf(PDF_file) | |
truncated = False | |
if len(doc) > max_pages: | |
logging.warning( | |
f"PDF has {len(doc)} pages, which is more than {max_pages}.. truncating" | |
) | |
doc = doc[:max_pages] | |
truncated = True | |
# Analyze | |
logging.info(f"running OCR on {len(doc)} pages") | |
result = ocr_model(doc) | |
raw_text = result2text(result) | |
proc_text = [format_ocr_out(r) for r in raw_text] | |
fin_text = [postprocess(t) for t in proc_text] | |
ocr_results = "\n\n".join(fin_text) | |
fn_rt = time.perf_counter() - st | |
logging.info("OCR complete") | |
results_dict = { | |
"num_pages": len(doc), | |
"runtime": round(fn_rt, 2), | |
"date": str(date.today()), | |
"converted_text": ocr_results, | |
"truncated": truncated, | |
"length": len(ocr_results), | |
} | |
return results_dict | |