Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from PIL import Image | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
device = None | |
depth_estimator = None | |
feature_extractor = None | |
def init(): | |
global device, depth_estimator, feature_extractor | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Initializing depth estimator...") | |
depth_estimator = DPTForDepthEstimation.from_pretrained( | |
"Intel/dpt-hybrid-midas").to(device) | |
feature_extractor = DPTFeatureExtractor.from_pretrained( | |
"Intel/dpt-hybrid-midas") | |
def get_depth_map(image): | |
original_size = image.size | |
image = feature_extractor( | |
images=image, return_tensors="pt").pixel_values.to(device) | |
with torch.no_grad(), torch.autocast(device): | |
depth_map = depth_estimator(image).predicted_depth | |
depth_map = torch.nn.functional.interpolate( | |
depth_map.unsqueeze(1), | |
size=original_size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
image = torch.cat([depth_map] * 3, dim=1) | |
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
return image | |