prithivMLmods commited on
Commit
6dc1ca6
·
verified ·
1 Parent(s): a1bbc74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -22
app.py CHANGED
@@ -1,18 +1,9 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import json
4
- import uuid
5
  from PIL import Image
6
  from bs4 import BeautifulSoup
7
  import requests
8
- import random
9
- from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
10
- from threading import Thread
11
- import re
12
- import time
13
- import torch
14
- import cv2
15
- from gradio_client import Client, file
16
 
17
  def extract_text_from_webpage(html_content):
18
  soup = BeautifulSoup(html_content, 'html.parser')
@@ -22,16 +13,14 @@ def extract_text_from_webpage(html_content):
22
 
23
  def search(query):
24
  term = query
25
- start = 0
26
  all_results = []
27
  max_chars_per_page = 8000
28
  with requests.Session() as session:
29
  resp = session.get(
30
  url="https://www.google.com/search",
31
  headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
32
- params={"q": term, "num": 3, "udm": 14},
33
- timeout=5,
34
- verify=None,
35
  )
36
  resp.raise_for_status()
37
  soup = BeautifulSoup(resp.text, "html.parser")
@@ -40,7 +29,7 @@ def search(query):
40
  link = result.find("a", href=True)
41
  link = link["href"]
42
  try:
43
- webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
44
  webpage.raise_for_status()
45
  visible_text = extract_text_from_webpage(webpage.text)
46
  if len(visible_text) > max_chars_per_page:
@@ -55,9 +44,6 @@ client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
55
  client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
56
  client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
57
 
58
-
59
- func_caller = []
60
-
61
  # Define the main chat function
62
  def respond(message, history):
63
  func_caller = []
@@ -71,7 +57,7 @@ def respond(message, history):
71
  func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
72
  func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
73
 
74
- message_text = message["text"]
75
  func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
76
 
77
  response = client_gemma.chat_completion(func_caller, max_tokens=200)
@@ -90,9 +76,7 @@ def respond(message, history):
90
  json_data = json.loads(str(response))
91
  if json_data["name"] == "web_search":
92
  query = json_data["arguments"]["query"]
93
- gr.Info("Searching Web")
94
  web_results = search(query)
95
- gr.Info("Extracting relevant Info")
96
  web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
97
  messages = f"system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions."
98
  for msg in history:
@@ -129,13 +113,16 @@ def respond(message, history):
129
  if not response.token.text == "":
130
  output += response.token.text
131
  yield output
132
-
 
133
  demo = gr.ChatInterface(
134
  fn=respond,
135
  chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
136
- description =" ",
137
  textbox=gr.MultimodalTextbox(),
138
  multimodal=True,
139
  concurrency_limit=200,
140
  )
 
 
141
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import json
 
4
  from PIL import Image
5
  from bs4 import BeautifulSoup
6
  import requests
 
 
 
 
 
 
 
 
7
 
8
  def extract_text_from_webpage(html_content):
9
  soup = BeautifulSoup(html_content, 'html.parser')
 
13
 
14
  def search(query):
15
  term = query
 
16
  all_results = []
17
  max_chars_per_page = 8000
18
  with requests.Session() as session:
19
  resp = session.get(
20
  url="https://www.google.com/search",
21
  headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
22
+ params={"q": term, "num": 3},
23
+ timeout=5
 
24
  )
25
  resp.raise_for_status()
26
  soup = BeautifulSoup(resp.text, "html.parser")
 
29
  link = result.find("a", href=True)
30
  link = link["href"]
31
  try:
32
+ webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5)
33
  webpage.raise_for_status()
34
  visible_text = extract_text_from_webpage(webpage.text)
35
  if len(visible_text) > max_chars_per_page:
 
44
  client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
45
  client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
46
 
 
 
 
47
  # Define the main chat function
48
  def respond(message, history):
49
  func_caller = []
 
57
  func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
58
  func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
59
 
60
+ message_text = message
61
  func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
62
 
63
  response = client_gemma.chat_completion(func_caller, max_tokens=200)
 
76
  json_data = json.loads(str(response))
77
  if json_data["name"] == "web_search":
78
  query = json_data["arguments"]["query"]
 
79
  web_results = search(query)
 
80
  web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
81
  messages = f"system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions."
82
  for msg in history:
 
113
  if not response.token.text == "":
114
  output += response.token.text
115
  yield output
116
+
117
+ # Define the Gradio demo
118
  demo = gr.ChatInterface(
119
  fn=respond,
120
  chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
121
+ description="Ask anything and get responses based on web searches and AI models.",
122
  textbox=gr.MultimodalTextbox(),
123
  multimodal=True,
124
  concurrency_limit=200,
125
  )
126
+
127
+ # Launch the Gradio demo
128
  demo.launch()